

SC92F84H3/84H9/84H2

高速 1T 8051 内核 Flash MCU ,1 Kbytes SRAM ,16 Kbytes Flash,128 bytes 独立 20 通道可低功耗高灵敏度触控电路, 12 位 ADC, 5 个定时器, 乘除法器, UART, SSI, Check Sum 校验模块

1 总体描述

SC92F84H3/84H9/84H2(以下简称 SC92F84HX)是一颗增 强型的高速 1T 8051 内核工业级集成触控按键功能的 Flash 微控 制器,指令系统完全兼容传统8051产品系列。

SC92F84HX 内建一个 20 通道的可低功耗高灵敏电容触控电 路,触控电路可选择在 STOP Mode 下运行。SC92F84HX 还集成 有 16 Kbytes Flash ROM、1 Kbytes SRAM、128 bytes EEPROM、 最多26个GPI/O、8个IO可外部中断、5个16位定时器、21路 12 位高精度 ADC、内部±1%高精度高频 12/6/2MHz 振荡器和±4% 精度低频 32K 振荡器、可外接 32.768kHz 晶体振荡器、一个 UART,一个 UART/SPI/TWI 三选一通信口 SSI。为提高可靠性及 简化客户电路, SC92F84HX 内部也集成有 4 级可选电压 LVR、 2.4V 基准 ADC 参考电压等高可靠电路。

SC92F84HX具有非常优异的抗干扰性能和性能极好的触控按 键性能, 非常适合应用于各种使用场合的触控按键和主控控制, 如大小智能家电和智能家居、物联网、无线通讯、游戏机等工业 控制和消费应用领域。

2 主要功能

工作电压: 2.4V~5.5V 工作温度: -40~85℃

EMS

- **ESD**
 - HBM: MIL-STD-883J Class 3A
 - MM: JEDEC EIA/JESD22-A115 Class C
 - CDM: ANSI/ESDA/JEDEC JS-002-2018 Class C3
- **EFT**
 - EN61000-4-4 Level 4

内核: 1T 8051

Flash ROM: 16 Kbytes Flash ROM (MOVC 禁止寻址 0000H~ 00FFH) 可重复写入 1 万次

IAP: 可 code option 成 0K、0.5K、1K 或 16K

EEPROM: 128 bytes, 无需擦除, 10 万次写入, 10 年以上保存

SRAM: 内部 256 bytes+外部 768 bytes

系统时钟(fsys):

- 内建高频 24MHz 振荡器(f_{HRC})
 - IC工作的系统时钟,可通过编程器选择设定为: 12/6/2MHz@2.4~5.5V
 - 频率误差: 跨越(2.9V~5.5V)及(-40~85℃)应用 环境,不超过 ±1%

内置低频晶体振荡器电路:

可外接 32.768kHz 振荡器, 作为 Base Timer 时钟源, 可唤 醒 STOP

内建低频 32kHz LRC 振荡器:

- 可作为 Base Timer 的时钟源,可唤醒 STOP
- 可作为 WDT 的时钟源
- 频率误差: 跨越(4.0V~5.5V)及(-20~85°C)应用环境, 频率误差不超过 ±4%

低电压复位(LVR):

- 复位电压有 4 级可选: 分别是: 4.3V、3.7V、2.9V、2.3V
- 缺省值为用户烧写 Code Option 所选值

Flash 烧写和仿真:

2线 JTAG 烧写和仿真接口

中断 (INT):

- Timer0~4, INTO, INT1, ADC, UART, SSI, Base Timer, TK 共 12 个中断源
- 外部中断有2个中断向量,共8个中断口,全部可设上升沿、 下降沿、双沿中断
- 两级中断优先级可设

数字外围:

- 最大 26 个双向可独立控制的 I/O 口,可独立设定上拉电阻
- P0、P2 口源驱动能力分四级控制
- 全部 IO 具有大灌电流驱动能力(100mA@0.8V)
- 11 位 WDT,可选时钟分频比
- 5 个定时器 Timer0、Timer1、Time2、Timer3 和 Timer4
 - Time2、Timer3 和 Timer4 可实现 Capture 功能
 - Time2、Timer3 和 Timer4 可各提供两路常规 PWM
 - Time2、Timer3 的时钟输入口 Tn(n=2,3)和下降 沿捕获口 TnEX 可映射到其它端口
- 1 个独立 UART 通信口 UARTO (可切换 IO 口)
- 1个 UART/SPI/TWI 三选一通讯口 SSI (可切换 IO 口)
- 集成 16×16 位硬件乘除法器
- 内建 CheckSum 校验模块

模拟外围:

- 20 通道高灵敏度度触控电路:
 - 可适应隔空按键触控、接近感应等对灵敏度要求较高 的触控应用
 - 具有很强的抗干扰性,可通过 10V 动态 CS 测试
 - 支持低功耗模式
 - 全套开发支持: 高灵活触控软件库, 智能化调试软件
 - TK 可以快速唤醒 STOP 模式
- 21 路 12 位 ADC
 - 内建基准的 2.4V 参考电压
 - ADC 的参考电压有 2 种选择,分别是 V_{DD} 以及内部
 - 内部一路 ADC 可直接测量 VDD 电压
 - 可设 ADC 转换完成中断

省电模式:

- IDLE Mode, 可由任何中断唤醒
- STOP Mode,由 INTO、INT1、BaseTimer和 TK 唤醒

92 系列产品命名规则

名称	SC	92	F	8	4	Н	3	Х	М	28	U
序号	1	2	3	4	(5)	6	7	8	9	10	(11)

序号	含义
1	Sinone Chip 缩写
2	产品系列名称
3	产品类型(F: Flash MCU)
4	系列号: 7: GP 系列, 8: TK 系列
(5)	ROM Size: 1为2K, 2为4K, 3为8K, 4为16K, 5为32K
6	子系列编号: 0~9, A~Z
7	引脚数: 0: 8pin,1: 16pin,2: 20pin,3: 28pin,5: 32pin,6: 44pin,7: 48pin,8: 64pin,9: 24pin
8	版本号: (缺省、B、C、D)
9	封装形式: (D: DIP; M: SOP; X: TSSOP; F: QFP; P: LQFP; Q: QFN; K: SKDIP)
(10)	引脚数
11)	包装方式: (U: 管装; R: 盘装; T: 卷带)

订购信息

产品编号	封装	包装
SC92F84H3M28U	SOP28	管装
SC92F84H3X28U	TSSOP28	管装
SC92F84H9M24U	SOP24	管装
SC92F84H9X24U	TSSOP24	管装
SC92F84H2M20U	SOP20	管装
SC92F84H2X20U	TSSOP20	管装

目录

1 总体描述	1
2 主要功能	1
92 系列产品命名规则	2
订购信息	3
目录	4
3 管脚定义	8
3.1 管脚配置 ······	8
3.2 管脚定义	11
4 内部框图	12
5 FLASH ROM 和 SRAM 结构 ·······	13
5.1 Flash ROM ·····	13
5.2 Customer Option 区域(用户烧写设置) 5.2.1 Option 相关 SFR 操作说明·······	14
5.3 SRAM·····	16
5.3.1 内部 256 bytes SRAM·····	
5.3.2 外部 768 bytes SRAM·····	
5.3.3 额外的 PWM SRAM ······	18
6 特殊功能寄存器(SFR)	19
6.1 SFR 映像 ······	19
6.2 SFR 说明······	20
6.2.1 PWM2~4 占空比调节寄存器(读/写) ······	
6.2.2 8051 CPU 内核常用特殊功能寄存器介绍 ·······	21
7 电源、复位和时钟	23
7.1 电源电路 ······	23
7.2 上电复位过程······	
7.2.1 复位阶段	
7.2.2 调入信息阶段	
723 正堂操作阶段	

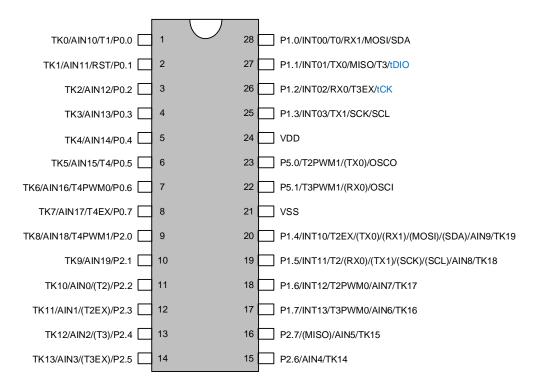
	7.3 复位方式	23
	7.3.1 外部 RST 复位 ···································	
	7.3.2 低电压复位 LVR····································	
	7.3.3 上电复位 POR····································	
	7.3.4 看门狗复位 WDT····································	
	7.3.5 软件复位	
	7.3.6 复位初始状态	25
	7.4 高频系统时钟电路 ······	25
	7.5 低频振荡器及低频时钟定时器 ······	27
	7.6 STOP 模式和 IDLE 模式 ···································	28
8	中央处理单元 CPU 及指令系统 ····································	30
	8.1 CPU ·····	30
	8.2 寻址方式 ······	•
	8.2.1 立即寻址 ····································	
	8.2.2 直接寻址	
	8.2.4 寄存器寻址······	
	8.2.5 相对寻址	
	8.2.6 变址寻址	
	8.2.7 位寻址	
9	INTERRUPT 中断 ···································	
	9.1 中断源、向量 ·····	32
	9.2 中断结构图 ······	21
	9.2 中断结构图	33
	9.3 中断优先级 ······	34
	9.4 中断处理流程 ······	34
	9.5 中断相关 SFR 寄存器 ···································	2.
	9.5 中 阿 相大 SFK 	34
10)定时器 TIMER0 、TIMER1	38
. •		
	10.1 T0 和 T1 相关特殊功能寄存器 ····································	38
	10.2 T0 工作模式·····	16
	10.3 T1 工作模式······	42
11	I 定时器 TIMER2/3/4	44
	11.1 T2/3/4 相关特殊功能寄存器 ····································	••••• 4 4
	11.2 定时器 Timer2······	16
	11.4 AE H3 TOT 1 1111C14	42

SC92F84H3/84H9/84H2

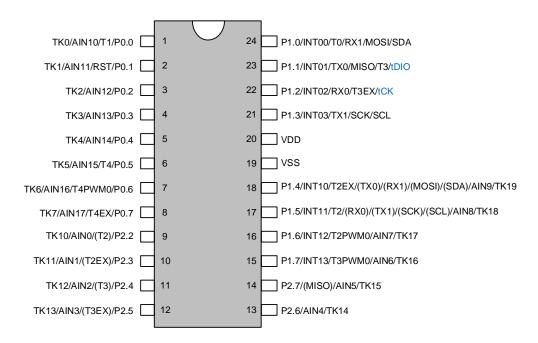
高速 1T 8051 内核 20 路高灵敏触控 Flash MCU

	11.3 定时器 Timer3·····	47
	11.4 定时器 Timer4······	48
	11.5 Timer2/3/4 工作模式 ······	50
	11.5.1 Timer2/3/4 工作模式说明····································	
	11.5.1 Time12.5.1 ± [[[KX4969]	50
12 ′	常规脉冲宽度调制计数器 PWM2/3/4	54
	12.1 PWM2/3/4 相关寄存器····································	54
	12.2 PWM2/3/4 占空比变化特性······	56
	12.3 PWM2/3/4 周期变化特性······	56
13 🗦	乘除法器	57
14 (GP I/O	58
	14.1 GPIO 结构图······	58
	14.2 I/O 端口相关寄存器······	59
15	UART0	62
		_
	15.1 串口通信的波特率 · · · · · · · · · · · · · · · · · · ·	63
16 9	SPI/TWI/UART 三选一串行接口 SSI ··································	65
	SPI/TWI/UART 三选一串行接口 SSI	
	16.1 SPI	••••• 65
	16.1 SPI	••••• 65 •••• 67
	16.1 SPI 16.1.1 SPI 操作相关寄存器 16.1.2 信号描述 16.1.3 工作模式	65 65 67
	16.1 SPI 16.1.1 SPI 操作相关寄存器 16.1.2 信号描述 16.1.3 工作模式 16.1.4 传送形式	65 65 67 67
	16.1 SPI 16.1.1 SPI 操作相关寄存器 16.1.2 信号描述 16.1.3 工作模式	65 65 67 67
	16.1 SPI 16.1.1 SPI 操作相关寄存器 16.1.2 信号描述 16.1.3 工作模式 16.1.4 传送形式 16.1.5 出错检测	65 65 67 68 69
	16.1 SPI 16.1.1 SPI 操作相关寄存器 16.1.2 信号描述 16.1.3 工作模式 16.1.4 传送形式	65 67 67 68 69
	16.1 SPI 16.1.1 SPI 操作相关寄存器 16.1.2 信号描述 16.1.3 工作模式 16.1.4 传送形式 16.1.5 出错检测	65 65 67 68 69 69
	16.1 SPI 16.1.1 SPI 操作相关寄存器 16.1.2 信号描述 16.1.3 工作模式 16.1.4 传送形式 16.1.5 出错检测 16.2 TWI 16.2.1 信号描述	6567686969
	16.1 SPI 16.1.1 SPI 操作相关寄存器 16.1.2 信号描述 16.1.3 工作模式 16.1.4 传送形式 16.1.5 出错检测 16.2 TWI 16.2.1 信号描述 16.2.2 工作模式	
	16.1 SPI 16.1.1 SPI 操作相关寄存器 16.1.2 信号描述 16.1.3 工作模式 16.1.4 传送形式 16.1.5 出错检测 16.2 TWI 16.2.1 信号描述 16.2.2 工作模式 16.2.3 操作步骤	656768697073
17 ₹	16.1 SPI 16.1.1 SPI 操作相关寄存器 16.1.2 信号描述 16.1.3 工作模式 16.1.4 传送形式 16.1.5 出错检测 16.2 TWI 16.2.1 信号描述 16.2.2 工作模式 16.2.3 操作步骤	6565676869707373
17 ‡	16.1 SPI	65676869707373
17 7	16.1 SPI 操作相关寄存器 16.1.2 信号描述 16.1.3 工作模式 16.1.4 传送形式 16.1.5 出错检测 16.2 TWI 16.2.1 信号描述 16.2.2 工作模式 16.2.2 工作模式 16.2.3 操作步骤 16.3 UART1 模数转换 ADC	65676869707373

SC92F84H3/84H9/84H2


高速 1T 8051 内核 20 路高灵敏触控 Flash MCU

	18.1 触控电路的耗电模式	79
19)EEPROM 及 IAP 操作	- 80
	19.1 EEPROM / IAP 操作相关寄存器·······	80
	19.2 EEPROM / IAP 操作流程	82
20) CHECK SUM 模块	- 85
	20.1 Check Sum 校验操作相关寄存器····································	85
21	电气特性	- 86
	21.1 极限参数	86
	21.2 推荐工作条件 ······	86
	21.3 直流电气特性	86
	21.4 交流电气特性	88
	21.5 ADC 电气特性······	88
22	. 封装信息	. 89
23	3 应用电路	. 95
24	· 规格更改记录······	- 96
声	明	. 97


3 管脚定义

3.1 管脚配置

28PIN 管脚配置图 适用于 SOP28、TSSOP28 封装

24PIN 管脚配置图 适用于 SOP24、TSSOP24 封装

	_			
TK0/AIN10/T1/P0.0		1	20	P1.0/INT00/T0/RX1/MOSI/SDA
TK1/AIN11/RST/P0.1	\Box	2	19	P1.1/INT01/TX0/MISO/T3/tDIO
TK2/AIN12/P0.2	\Box	3	18	P1.2/INT02/RX0/T3EX/tCK
TK3/AIN13/P0.3	\Box	4	17	P1.3/INT03/TX1/SCK/SCL
TK4/AIN14/P0.4	\Box	5	16	VDD
TK5/AIN15/T4/P0.5	\Box	6	15	vss
TK10/AIN0/(T2)/P2.2	\Box	7	14	P1.4/INT10/T2EX/(TX0)/(RX1)/(MOSI)/(SDA)/AIN9/TK19
TK11/AIN1/(T2EX)/P2.3	\Box	8	13	P1.5/INT11/T2/(RX0)/(TX1)/(SCK)/(SCL)/AIN8/TK18
TK12/AIN2/(T3)/P2.4	\Box	9	12	P2.7/(MISO)/AIN5/TK15
TK13/AIN3/(T3EX)/P2.5	\Box	10	11	P2.6/AIN4/TK14
	ι			

20PIN 管脚配置图 适用于 SOP20、TSSOP20 封装

3.2 管脚定义

	脚位数									14. =		
20	24	28	I/O	TK	ADC	TIM	UART	SPI	TWI	烧录	INT	osc
1	1	1	P0.0	TK0	AIN10	T1	-	-	-	-	-	-
2	2	2	P0.1	TK1	AIN11	-	-	-	-	RST	-	-
3	3	3	P0.2	TK2	AIN12	-	-	-	-	-	-	-
4	4	4	P0.3	TK3	AIN13	-	-	-	-	-	-	-
5	5	5	P0.4	TK4	AIN14	-	-	-	-	-	-	-
6	6	6	P0.5	TK5	AIN15	T4	-	-	-	-	-	-
-	7	7	P0.6	TK6	AIN16	T4PWM0	-	-	-	-	-	-
-	8	8	P0.7	TK7	AIN17	T4EX	-	-	-	-	-	-
-	-	9	P2.0	TK8	AIN18	T4PWM1	-	-	-	-	-	-
-	-	10	P2.1	TK9	AIN19		-	-	-	-	-	-
7	9	11	P2.2	TK10	AIN0	(T2)	-	-	-	-	-	-
8	10	12	P2.3	TK11	AIN1	(T2EX)	-	-	-	-	-	-
9	11	13	P2.4	TK12	AIN2	(T3)	-	-	-	-	-	-
10	12	14	P2.5	TK13	AIN3	(T3EX)	-	-	-	-	-	-
11	13	15	P2.6	TK14	AIN4	-	-	-	-	-	-	-
12	14	16	P2.7	TK15	AIN5	-	-	(MISO)	-	-	-	-
-	15	17	P1.7	TK16	AIN6	T3PWM0	-	-	-	-	INT13	•
-	16	18	P1.6	TK17	AIN7	T2PWM0	-	-	-	-	INT12	
13	17	19	P1.5	TK18	AIN8	T2	(RX0)(TX1)	(SCK)	(SCL)	-	INT11	-
14	18	20	P1.4	TK19	AIN9	T2EX	(TX0)(RX1)	(MOSI)	(SDA)	-	INT10	-
15	19	21	VSS	-	-	-	-	-	-	-	-	-
-	-	22	P5.1	-	-	T3PWM1	(RX0)	-	-	-	-	OSCI
-	-	23	P5.0	-	-	T2PWM1	(TX0)	-	-	-	-	OSCO
16	20	24	VDD	-	-	-	-	-	-	-	-	-
17	21	25	P1.3	-	-	-	TX1	SCK	SCL	-	INT03	-
18	22	26	P1.2	-	-	T3EX	RX0	-	-	tCK	INT02	-
19	23	27	P1.1	-	-	T3	TX0	MISO	-	tDIO	INT01	-
20	24	28	P1.0	-	-	T0	RX1	MOSI	SDA	-	INT00	-

说明: "()"内为可切换的信号口,具体切换方式如下:

UARTO 管脚映射控制

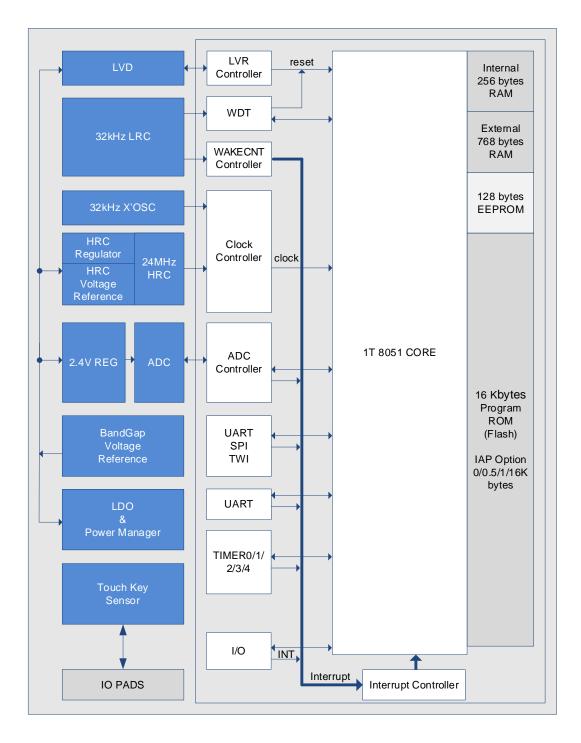
信号	GPIO-默认信号口 UART0OS[1:0]=00	GPIO-A 组映射 UART0OS[1:0]=01	GPIO-B 组映射 UART0OS[1:0]=10
RX0	P1.2	P5.1	P1.5
TX0	P1.1	P5.0	P1.4

SSI 管脚映射控制

	信号		GPIO-默认信号口 SSIOS=0	GPIO-A 组映射 SSIOS=1
RX1	MOSI	SDA	P1.0	P1.4
-	MISO	-	P1.1	P2.7
TX1	SCK	SCL	P1.3	P1.5

TIM2 管脚映射控制

信号	GPIO-默认信号口 T2OS=0	GPIO-A 组映射 T2OS=1
T2	P1.5	P2.2
T2EX	P1.4	P2.3

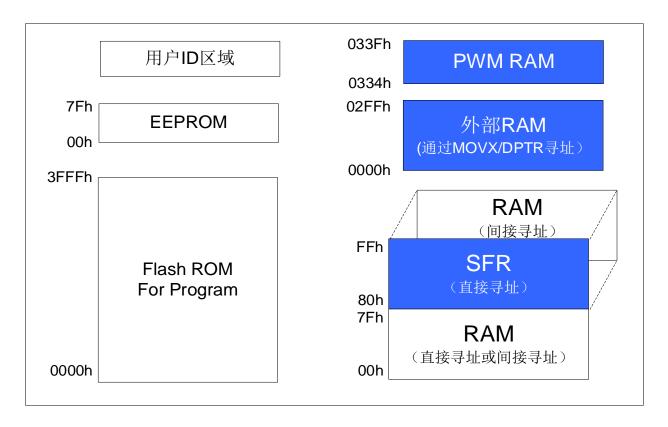

TIM3 管脚映射控制

信号	GPIO-默认信号口 T3OS=0	GPIO-A 组映射 T3OS=1
T3	P1.1	P2.4

Page 11 of 97 V1.0

信号	GPIO-默认信号口 T3OS=0	GPIO-A 组映射 T3OS=1
T3EX	P1.2	P2.5

4 内部框图


SC92F84HX BLOCK DIAGRAM

Page 12 of 97 V1.0 http://www.socmcu.com

5 FLASH ROM 和 SRAM 结构

SC92F84HX的 Flash ROM和 SRAM 结构如下:

Flash ROM和 SRAM 结构图

5.1 FLASH ROM

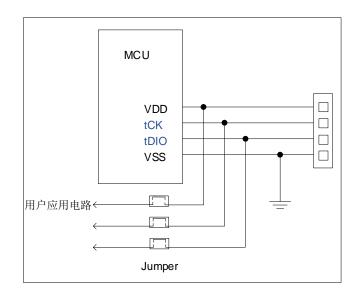
SC92F84HX 有 16 Kbytes 的 Flash ROM,ROM 地址为 0000H~3FFFH。此 16 Kbytes Flash ROM 可反复写入 1 万次,可通过 SinOne 提供的专用 ICP 烧写器来进行编程及擦除。地址为 0000H~00FFH 地址的 256 bytes 区间 MOVC 指令不可寻址。

EEPROM 为独立于 16 Kbytes ROM 之外的一块区间,其地址为 00H~7FH,可在程序中对其进行单 byte 读写操作,具体操作方法参考 19 EEPROM 及 IAP 操作。

用户 ID 区域: 出厂时写入用户 ID,用户只可对其进行读操作,具体操作方式参考 19 EEPROM 及 IAP 操 $\underline{\mathbf{t}}$ 。

SC92F84HX 的 16 Kbytes Flash ROM 能提供查空 BLANK、编程 PROGRAM、校验 VERIFY 和擦除 ERASE 功能,但不提供读取 READ 的功能。此 Flash ROM 和 EEPROM 通常写入前无需进行擦除操作,直接写入数据即可实现新数据的覆盖。

SC92F84HX的 Flash ROM 通过 tDIO、tCK、VDD、VSS来进行编程,具体连接关系如下:


ICP烧录器

VDD

CLK

DIO

GND

ICP 模式 Flash Writer 编程连接示意图

tDIO、tCK 是 2 线 JTAG 烧写和仿真的信号线,用户在烧录时可通过 Code Option 项配置这两端口的模式:

JTAG 专用模式:

tDIO、tCK 为烧写仿真专用口,与之复用的其它功能不可用。此模式一般用于在线调试阶段,方便用户仿真 调试; JTAG 专用模式生效后,芯片无需重新上下电即可直接进入烧录或仿真模式。

常规模式(JTAG 专用口无效):

JTAG 功能不可用,与之复用的其它功能可正常使用。此模式可防止烧录口占用 MCU 管脚,方便用户最大化 利用 MCU 资源。

注意: 当 JTAG 专用口无效的配置设定成功后,芯片必须彻底下电再重新上电后才能进入烧录或仿真模式, 这样就会影响到带电模式下的烧录和仿真。赛元建议用户在量产烧录时选择 JTAG 专用口无效的配置,在研发调 试阶段选择 JTAG 模式。

JTAG 专用模式口配置寄存器:

OP CTM1 (C2H@FFH) Code Option 寄存器 1 (读/写)

位编号	7	6	5	4	3 2		1	0
符号	VREFS			DISJTG	IAPS[1:0]		-	ı
读/写	读/写		-	读/写	读/写	读/写 读/写		•
上电初始值	n	Х	Х	n	n	n	Х	Х

位约	编号	位符号	说明
	4	DISJTG	IO/JTAG 口切换控制 0: JTAG 模式使能,P1.2、P1.1 只能作为 tCK/tDIO 使用。研发调试 阶段推荐设置。 1: 常规模式,P1.2、P1.1 作为正常的 I/O 使用,JTAG 功能无效。量 产烧录阶段推荐设置。

5.2 CUSTOMER OPTION 区域(用户烧写设置)

SC92F84HX内部有单独的一块Flash区域用于保存客户的上电初始值设置,此区域称为Code Option区域。 用户在烧写 IC 时将此部分代码写入 IC 内部,IC 在复位初始化时,就会将此设置调入 SFR 作为初始设置。 Option 相关 SFR 操作说明:

Page 14 of 97 V1.0 http://www.socmcu.com

Option 相关 SFR 的读写操作由 OPINX 和 OPREG 两个寄存器进行控制,各 Option SFR 的具体位置由 OPINX 确定,如下表所示:

符号	地址	说明	7	6	5	4	3	2	1	0
OP_HRCR	83H@FFH	系统时钟改变寄存器				OP_HR	CR[7:0]			
OP_CTM0	C1H@FFH	Customer Option 寄存器 0	ENW DT	ENXT L	SCLK	S[1:0]	DISR ST	DISL VR	LVRS	S[1:0]
OP_CTM1	C2H@FFH	Customer Option 寄存 器 1	VREF S	-	-	DISJ TG	IAPS	6[1:0]	-	-

OP_HRCR(83H@FFH)系统时钟改变寄存器(读/写)

位编号	7	6	5	4	3	2	1	0	
符号		OP_HRCR[7:0]							
读/写		读/写							
上电初始值	n	n	n	n	n	n	n	n	

位编号	位符号	说明		
7~0	OP_HRCR[7:0]	内部高频 RC 频率调校 中心值 10000000b 对应 HRC 中心频率, 频率变慢。	数值变大频率加快,	数值变小

OP CTM0 (C1H@FFH) Customer Option 寄存器 0 (读/写)

—	_		1 777 77					
位编号	7	6	5	4	3	2	1	0
符号	ENWDT	ENXTL	SCLKS[1:0]		DISRST	DISLVR	LVRS[1:0]	
读/写	读/写	读/写	读	读/写		读/写	读/写	
上电初始值	n	n	ı	า	n	n	ı	n

位编号	位符号	说明
7	ENWDT	WDT 开关 0: WDT 无效 1: WDT 有效(但 IC 在执行 IAP 过程中 WDT 停止计数)
6	ENXTL	外部 32.768kHz 晶振选择开关 0: 外部 32.768kHz 晶振关闭, P5.0、P5.1 有效; 1: 外部 32.768kHz 晶振打开, P5.0、P5.1 无效。
5~4	SCLKS[1:0]	系统时钟频率选择: 00:保留; 01:系统时钟频率为高频振荡器频率除以2; 10:系统时钟频率为高频振荡器频率除以4; 11:系统时钟频率为高频振荡器频率除以12。
3	DISRST	IO/RST 复位切换控制 0: P0.1 当复位脚使用 1: P0.1 当正常的 I/O 管脚使用
2	DISLVR	LVR 使能设置 0: LVR 正常使用 1: LVR 无效
1~0	LVRS [1:0]	LVR 电压选择控制 11: 4.3 V 复位 10: 3.7V 复位 01: 2.9V 复位 00: 2.3V 复位

OP_CTM1 (C2H@FFH) Customer Option 寄存器 1 (读/写)

Page 15 of 97 V1.0 http://www.socmcu.com

位编号	7	6	5	4	3	2	1	0
符号	VREFS	-	-	DISJTG	IAPS[1:0]		-	-
读/写	读/写	-	-	读/写	读/写 读/写		-	-
上电初始值	n	х	х	n	n	n	х	х

位编号	位符号	说明
7	VREFS	参考电压选择(初始值从 Code Option 调入,用户可修改设置) 0: 设定 ADC 的 VREF 为 VDD 1: 设定 ADC 的 VREF 为内部准确的 2.4V
4	DISJTG	IO/JTAG 口切换控制 0: P1.2、P1.3 作为 tCK/tDIO 使用。研发调试阶段推荐设置。 1: P1.2、P1.3 作为正常的 I/O 使用。量产烧录阶段推荐设置。
3~2	IAPS[1:0]	IAP 空间范围选择 00: Code 区域禁止 IAP 操作,仅 EEPROM 区域可作为数据存储使用 01: 最后 0.5K Code 区域允许 IAP 操作(3E00H~3FFFH) 10: 最后 1K Code 区域允许 IAP 操作(3C00H~3FFFH) 11: 全部 Code 区域允许 IAP 操作(0000H~3FFFH)
6~4, 1~0	-	保留

5.2.1 OPTION 相关 SFR 操作说明

Option 相关 SFR 的读写操作由 OPINX 和 OPREG 两个寄存器进行控制,各 Option SFR 的具体位置由 OPINX 确定,各 Option SFR 的写入值由 OPREG 确定:

符号	地址	说明	7	6	5	4	3	2	1	0	上电初始值
OPINX	FEH	Option 指针		OPINX[7:0]						0000000b	
OPREG	FFH	Option 寄存器		OPREG[7:0]							nnnnnnnb

操作 Option 相关 SFR 时 OPINX 寄存器存放相关 OPTION 寄存器的地址, OPREG 寄存器存放对应的值。 例如:要将 ENWDT (OP_CTM0.7)置 1,具体操作方法如下:

C语言例程:

OPINX = 0xC1: //将 OP CTM0 的地址写入 OPINX 寄存器

//对 OP_CTM0.7 置 1 OPREG \mid = 0x80;

汇编例程:

MOV OPINX,#C1H; 将 OP_CTM0 的地址写入 OPINX 寄存器

ORL OPREG,#80H; 对 OP_CTM0.7 置 1

注意: 禁止向 OPINX 寄存器写入 Code Option 区域 SFR 地址之外的数值! 否则会造成系统运行异常!

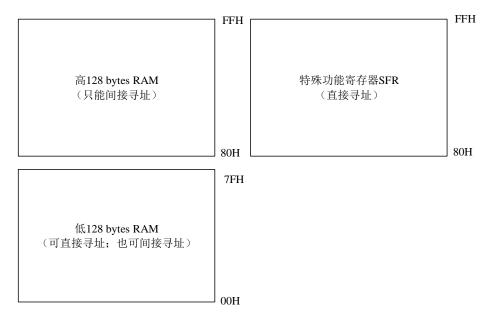
5.3 SRAM

SC92F84HX 单片机内部集成了 1 Kbytes 的 SRAM, 分为内部 256 bytes RAM 和外部 768 bytes RAM。内部 RAM 的地址范围为 00H~FFH, 其中高 128 bytes(地址 80H~FFH)只能间接寻址, 低 128 bytes(地址 00H~7FH) 可直接寻址也可间接寻址。

特殊功能寄存器 SFR 的地址也是 80H~FFH。但 SFR 同内部高 128 bytes SRAM 的区别是: SFR 寄存器是直 接寻址,而内部高 128 bytes SRAM 只能是间接寻址。

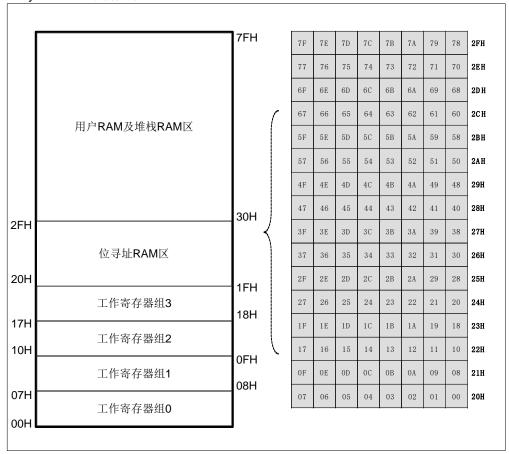
外部 RAM 的地址为 0000H~02FFH, 但需通过 MOVX 指令来寻址。

5.3.1 内部 256 BYTES SRAM


内部低 128 bytes SRAM 区可分为三部分:①工作寄存器组 0~3,地址 00H~1FH,程序状态字寄存器 PSW 中的 RS0、RS1 组合决定了当前使用的工作寄存器,使用工作寄存器组 0~3 可加快运算的速度;②位寻址区 20H~2FH,此区域用户可以用作普通 RAM 也可用作按位寻址 RAM;按位寻址时,位的地址为 00H~7FH,(此

Page 16 of 97

V1 0



地址按位编地址,不同于通用 SRAM 按字节编地址),程序中可由指令区分;③用户 RAM 和堆栈区,SC92F84HX 复位过后,8 位的堆栈指针指向堆栈区,用户一般会在初始化程序时设置初值,建议设置在E0H~FFH的单元区间。

内部 256 bytes RAM 结构图

内部低 128 bytes RAM 结构如下:

SRAM 结构图

5.3.2 外部 768 BYTES SRAM

SC92F84H3/84H9/84H2

高速 1T 8051 内核 20 路高灵敏触控 Flash MCU

可通过 MOVX @DPTR, A 来访问外部 768 字节 RAM; 也可以使用 MOVX A, @Ri 或 MOVX @Ri, A 配合 EXADH 寄存器来访问外部 768 字节 RAM: EXADH 寄存器存放外部 SRAM 的高位地址,Ri 寄存器存放外部 SRAM 的低 8 位地址。

EXADH (F7H) 外部 SRAM 操作地址高位(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	-	-	EXAD	H [1:0]
上电初始值	Х	Х	Х	Х	Х	Х	0	0

位编号	位符号	说明
1~0	EXADH [1:0]	外部 SRAM 操作地址的高位
7~2	-	保留

5.3.3 额外的 PWM SRAM

RAM 地址的 0334H~033FH 作为额外的 PWM 占空比调节寄存器,可读写。

Page 18 of 97 V1.0

6 特殊功能寄存器 (SFR)

6.1 SFR 映像

SC92F84HX 系列有一些特殊功能寄存器,我们称为 SFR。这些 SFR 寄存器的地址位于 80H~FFH,有些可 以位寻址,有些不能位寻址。能够进行位寻址操作的寄存器的地址末位数都是"0"或"8",这些寄存器在需要 改变单个位的数值时非常方便。所有的 SFR 特殊功能寄存器都必须使用直接寻址方式寻址。

SC92F84HX的特殊功能寄存器名称及地址如下表:

	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h	-	-	-	BTMCON	CHKSUML	CHKSUMH	OPINX	OPREG	
F0h	В	IAPKEY	IAPADL	IAPADH	IAPADE	IAPDAT	IAPCTL	EXADH	
E8h	-	EXA0	EXA1	EXA2	EXA3	EXBL	EXBH	OPERCON	
E0h	ACC	-	-	-	-	-	-	-	
D8h	P5	P5CON	P5PH		-	-	ı	-	
D0h	PSW		-		-	-	ı	-	
C8h	TXCON	TXMOD	RCAPXL	RCAPXH	TLX	THX	TXINX	WDTCON	
C0h	-	-	-	-	-	-	-	-	
B8h	IP	IP1	INT0F	INT0R	INT1F	INT1R	-		
B0h	-	-	-	-	-	ADCCFG2	-	-	
A8h	IE	IE1	ADCCFG3	ADCCFG0	ADCCFG1	ADCCON	ADCVL	ADCVH	
A0h	P2	P2CON	P2PH	-	-	-	-	-	
98h	SCON	SBUF	P0CON	P0PH	-	SSCON0	SSCON1	SSDAT	
90h	P1	P1CON	P1PH		-	SSCON2	ı	IOHCON	
88h	TCON	TMOD	TL0	TL1	TH0	TH1	TMCON	OTCON	
80h	P0	SP	DPL	DPH	-	-	-	PCON	
	可位寻址		不可位寻址						

说明:

- SFR 寄存器中空的部分代表没有此寄存器 RAM,不建议用户使用。
- SFR 中的 F1H~FFH 为系统配置使用的特殊功能寄存器,用户使用可能会导致系统异常,用户在初始化 系统时,不能对这些寄存器进行清零或其它操作。

Page 19 of 97 V1.0

6.2 SFR 说明

特殊功能寄存器 SFR 的具体解释说明如下:

			具体解释说明如 卜:							1 4 3-4 6 64	
符号	地址	说明	7	6	5	4	3	2	1	0	上电初始值
P0	80H	P0 口数据寄存器	P07	P06	P05	P04	P03	P02	P01	P00	0000000b
SP	81H	堆栈指针				SP[7:0]				00000111b
DPL	82H	DPTR 数据指针低位				DPL	[7:0]				0000000b
DPH	83H	DPTR 数据指针高位		ı	1	DPH	[7:0]	ı	ı	ı	0000000b
PCON	87H	电源管理控制寄存器	SMOD	-	-	-	RST	-	STOP	IDL	0xxx0x00b
TCON	88H	定时器控制寄存器	TF1	TR1	TF0	TR0	IE1	-	IE0	-	00000x0xb
TMOD	89H	定时器工作模式寄存器	-	C/T1	M11	M01	-	C/T0	M10	M00	x000x000b
TL0	8AH	定时器 0 低 8 位				TL0	[7:0]				0000000b
TL1	8BH	定时器 1 低 8 位				TL1	[7:0]				0000000b
TH0	8CH	定时器 0 高 8 位				TH0	[7:0]				00000000b
TH1	8DH	定时器 1 高 8 位				TH1	[7:0]				0000000b
TMCON	8EH	定时器频率控制寄存器	-	-	-	T3OS	-	T2OS	T1FD	T0FD	xxx0x000b
OTCON	8FH	输出控制寄存器	SSMC	D[1:0]	UARTO	OS[1:0]	-	-	SSIOS	-	0000xx0xb
P1	90H	P1 口数据寄存器	P17	P16	P15	P14	P13	P12	P11	P10	0000000b
P1CON	91H	P1 口输入/输出控制寄存器	P1C7	P1C6	P1C5	P1C4	P1C3	P1C2	P1C1	P1C0	00000000b
P1PH	92H	P1 口上拉电阻控制寄存器	P1H7	P1H6	P1H5	P1H4	P1H3	P1H2	P1H1	P1H0	0000000b
SSCON2	95H	SSI 控制寄存器 2		•		SSCO	N2[7:0]	•	•	•	00000000b
IOHCON	97H	IOH 设置寄存器	P2H	[1:0]	P2L	[1:0]	P0H	[1:0]	P0L	[1:0]	0000000b
SCON	98H	串口控制寄存器	SM0	SM1	SM2	REN	TB8	RB8	TI	RI	00000000b
SBUF	99H	串口数据缓存寄存器		_			F[7:0]				00000000b
P0CON	9AH	P0 口输入/输出控制寄存器	P0C7	P0C6	P0C5	P0C4	P0C3	P0C2	P0C1	P0C0	0000000b
P0PH	9BH	P0 口上拉电阻控制寄存器	P0H7	P0H6	P0H5	P0H4	P0H3	P0H2	P0H1	P0H0	00000000b
SSCON0	9DH	SSI 控制寄存器 0		1 0110	. 0.10		N0[7:0]	1 01.12		. 0.10	00000000b
SSCON1	9EH	SSI 控制寄存器 1					N1[7:0]				00000000b
SSDAT	9FH	SSI 数据寄存器					[7:0]				00000000b
P2	A0H	P2 口数据寄存器	P27	P26	P25	P24	P23	P22	P21	P20	00000000b
P2CON	A1H	P2 口输入/输出控制寄存器	P2C7	P2C6	P2C5	P2C4	P2C3	P2C2	P2C1	P2C0	00000000b
P2PH	A2H	P2 口上拉电阻控制寄存器	P2H7	P2H6	P2H5	P2H4	P2H3	P2H2	P2H1	P2H0	00000000b
IE	A8H	中断使能寄存器	EA	EADC	ET2	EUART	ET1	EINT1	ET0	EINT0	00000000b
IE1	A9H	中断使能寄存器 1	ET4	ET3		ETK	-	EBTM	-	ESSI	00x0x0x0b
ADCCFG3	AAH	ADC 设置寄存器 0	-		_		EAIN19	EAIN18	EAIN17	EAIN16	xxxx0000b
ADCCFG0	ABH	ADC 设置寄存器 0	EAIN7	EAIN6	EAIN5	EAIN4	EAIN3	EAIN2	EAIN1	EAIN0	0000000b
ADCCFG1	ACH	ADC 设置寄存器 1	EAIN15	EAIN14	EAIN13	EAIN12	EAIN11	EAIN10	EAIN9	EAIN8	0000000b
	ADH	ADC 控制寄存器	ADCEN	ADCS		EAINIZ	EAINTI		EAINS	EAINO	0000000b
ADCCON	AEH		ADCEN		ADCIF			ADCIS[4:0]			
ADCVL		ADC 结果寄存器		ADC	V[3:0]	A DC)	- (144.41	-	-	-	0000xxxxb
ADCCECO	AFH	ADC 结果寄存器				ADCV	i -		A D.C.C.V.[0:0]		00000000b
ADCCFG2	B5H	ADC 设置寄存器 2	-	-	-	-	LOWSP	IDINIT 4	ADCCK[2:0]		xxxx0000b
IP ID4	B8H	中断优先级控制寄存器	- IDT 4	IPADC	IPT2	IPUART	IPT1	IPINT1	IPT0	IPINT0	x0000000b
IP1	B9H	中断优先级控制寄存器 1	IPT4	IPT3	-	IPTK	-	IPBTM	- INTOF4	IPSSI	00x0x0x0b
INT0F	BAH	INTO 下降沿中断控制寄存器	-	-	-	-	INT0F3	INT0F2	INT0F1	INTOF0	xxxx0000b
INT0R	BBH	INTO 上升沿中断控制寄存器	-	-	-	-	INTOR3	INTOR2	INTOR1	INTOR0	xxxx0000b
INT1F	BCH	INT1 下降沿中断控制寄存器	-	-	-	-	INT1F3	INT1F2	INT1F1	INT1F0	xxxx0000b
INT1R	BDH	INT1 上升沿中断控制寄存器	-		-	-	INT1R3	INT1R2	INT1R1	INT1R0	xxxx0000b
TXCON	C8H	定时器 2/3/4 控制寄存器	TFX	EXFX	RCLK	TCLK	EXENX	TRX	C/TX	CP/RLX	00000000b
TXMOD	C9H	定时器 2/3/4 工作模式寄存器	TXFD	-	EPWMN1	EPWMN0	INVN1	INVN0	TXOE	DCEN	0x000000b
RCAPXL	CAH	定时器 2/3/4 重载低 8 位				RCAP:	XL[7:0]				00000000b
RCAPXH	СВН	定时器 2/3/4 重载高 8 位				RCAP	XH[7:0]				00000000b
TLX	ССН	定时器 2/3/4 低 8 位				TLX	[7:0]				00000000b
THX	CDH	定时器 2/3/4 高 8 位				THX	[7:0]				0000000b
TXINX	CEH	定时器控制寄存器指针	-	-	-	-	-		TXINX[2:0]		xxxxx010b
WDTCON	CFH	WDT 控制寄存器	-	-		CLRWDT			WDTCKS[2:0)]	xxx0x000b
PSW	D0H	程序状态字寄存器	CY	AC	F0	RS1	RS0	OV	F1	Р	00000000b
P5	D8H	P5 口数据寄存器	-	-	-	-	-	-	P51	P50	xxxxxx00b
P5CON	D9H	P5 口输入/输出控制寄存器	-	-	-	-	-	-	P5C1	P5C0	xxxxxx00b

Page 20 of 97 V1.0 http://www.socmcu.com

符号	地址	说明	7	6	5	4	3	2	1	0	上电初始值
P5PH	DAH	P5 口上拉电阻控制寄存器	-	-	-	-	-	-	P5H1	P5H0	xxxxxx00b
ACC	E0H	累加器		ACC[7:0]							
EXA0	E9H	扩展累加器 0		EXA[7:0]							
EXA1	EAH	扩展累加器 1		EXA[15:8]							00000000b
EXA2	EBH	扩展累加器 2		EXA[23:16]							00000000b
EXA3	ECH	扩展累加器 3				EXA[31:24]				0000000b
EXBL	EDH	扩展 B 寄存器 L		EXB [7:0]							
EXBH	EEH	扩展 B 寄存器 H				EXB	[15:8]				00000000b
OPERCON	EFH	运算控制寄存器	OPERS	PERS MD CHKSUMS							
В	F0H	B寄存器		B[7:0]							00000000b
IAPKEY	F1H	IAP 保护寄存器		IAPKEY[7:0]							0000000b
IAPADL	F2H	IAP 写入地址低位寄存器				IAPAD	R[7:0]				0000000b
IAPADH	F3H	IAP 写入地址高位寄存器	-	-			IAPAD	R[13:8]			xx000000b
IAPADE	F4H	IAP 写入扩展地址寄存器				IAPAD	ER[7:0]				00000000b
IAPDAT	F5H	IAP 数据寄存器				IAPDA	AT[7:0]				00000000b
IAPCTL	F6H	IAP 控制寄存器	-	-	-	-	PAYTIN	/IES[1:0]	СМ	D[1:0]	xxxx0000b
EXADH	F7H	外部 SRAM 操作地址高位	-	-	-	-	-	-	EXAD	DH [1:0]	xxxxxx00b
BTMCON	FBH	低频定时器控制寄存器	ENBTM	ENBTM BTMIF - BTMFS[3:0]							00xx0000b
CHKSUML	FCH	Check Sum 结果寄存器低位		CHKSUML[7:0]							00000000b
CHKSUMH	FDH	Check Sum 结果寄存器高位		CHKSUMH[7:0]						00000000b	
OPINX	FEH	Option 指针				OPIN	X[7:0]				00000000b
OPREG	FFH	Option 寄存器				OPRE	G[7:0]				nnnnnnnb

6.2.1 PWM2~4 占空比调节寄存器(读/写)

地址	7	6	5	4	3	2	1	0	上电初始 值
0334H				PDT2	0[15:8]				0000000b
0335H		PDT20[7:0]							
0336H				PDT2	1[15:8]				0000000b
0337H		PDT21[7:0]							
0338H		PDT30[15:8]							
0339H				PDT3	80[7:0]				0000000b
033AH				PDT3	1[15:8]				0000000b
203BH				PDT3	31[7:0]				0000000b
033CH		PDT40[15:8]							
033DH		PDT40[7:0]							
033EH		PDT41[15:8]							
033FH				PDT4	1[7:0]				0000000b

6.2.2 8051 CPU 内核常用特殊功能寄存器介绍

程序计数器 PC

程序计数器 PC 不属于 SFR 寄存器。PC 有 16 位,是用来控制指令执行顺序的寄存器。单片机上电或者复位 后,PC 值为 0000H,也即是说单片机程序从 0000H 地址开始执行程序。

累加器 ACC (E0H)

累加器 ACC 是 8051 内核单片机的最常用的寄存器之一,指令系统中采用 A 作为助记符。常用来存放参加计 算或者逻辑运算的操作数及结果。

B 寄存器(F0H)

B寄存器在乘除法运算中必须与累加器 A配合使用。乘法指令 MUL A, B把累加器 A和寄存器 B中的 8位无 符号数相乘,所得的16位乘积的低位字节放在A中,高位字节放在B中。除法指令DIVA,B是用A除以B,整 数商放在 A 中, 余数放在 B 中。寄存器 B 还可以作为通用的暂存寄存器使用。

V1.0 Page 21 of 97

SC92F84H3/84H9/84H2

高速 1T 8051 内核 20 路高灵敏触控 Flash MCU

堆栈指针 SP (81H)

堆栈指针是一个 8 位的专用寄存器,它指示出堆栈顶部在通用 RAM 中的位置。单片机复位后,SP 初始值为 07H,即堆栈会从 08H 开始向上增加。08H~1FH 为工作寄存器组 1~3。

PSW(D0H)程序状态字寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	CY	AC	F0	RS1	RS0	OV	F1	Р
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号			说明			
7	CY			有进位,或者减法运算最高位有借位时 无进位,或者减法运算最高位无借位时			
6	AC	进位辅助标志位(可在 BCD 码加减法运算时方便调整) 1: 加法运算时在 bit3 位有进位,或减法运算在 bit3 位有借位时 0: 无借位、进位					
5	F0	用户标志位					
4~3	RS1, RS0	工作寄存器组选择位: RS1					
2	ov	溢出标志位	Ĺ				
1	F1	F1 标志 用户自定义标志					
0	Р	1: ACC 中	1 的个数	E位为累加器 ACC 中 1 的个数的奇偶值。 以为奇数 以为偶数(包括 0 个)			

数据指针 DPTR (82H、83H)

数据指针 DPTR 是一个 16 位的专用寄存器,由低 8 位 DPL(82H)和高 8 位 DPH(83H)组成。DPTR 是以传统 8051 内核单片机中唯一可以直接进行 16 位操作的寄存器,也可以分别对 DPL 和 DPH 按字节进行操作。

Page 22 of 97 V1.0

7 电源、复位和时钟

7.1 电源电路

SC92F84HX 电源核心包括了 BG、LDO、POR、LVR 等电路,可实现在 2.4~5.5V 范围内可靠工作。此外, IC 内建了一个经调校过的精准 2.4V 电压,可用作 ADC 内部参考电压。用户可在 17 模数转换 ADC 查找具体设置 内容。

7.2 上电复位过程

SC92F84HX上电后,在客户端软件执行前,会经过以下的过程:

- 复位阶段
- 调入信息阶段
- 正常操作阶段

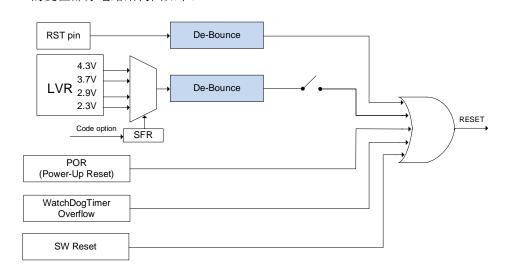
7.2.1 复位阶段

是指 SC92F84HX 会一直处于复位的情况,直到供应给 SC92F84HX 的电压高过某一电压,内部才开始有效的 Clock。复位阶段的时间长短和外部电源的上升速度有关,外部电源达到内建 POR 电压后,复位阶段才会完成。

7.2.2 调入信息阶段

在 SC92F84HX 内部有一个预热计数器。在复位阶段期间,此预热计数器一直被清为 0,直到电压过了 POR 电压后,内部 RC 振荡器开始起振,该预热计数器开始计数。当内部的预热计数器计数到一定数目后,每隔一定数 量个 HRC clock 就会从 Flash ROM 中的 IFB(包含 Code Option)读出一个 byte 数据存放到内部系统寄存器中。 直到预热完成后,该复位信号才会结束。

7.2.3 正常操作阶段


结束调入信息阶段后, SC92F84HX 开始从 Flash 中读取指令代码即进入正常操作阶段。这时的 LVR 电压值 是用户写入 Code Option 的设置值。

7.3 复位方式

SC92F84HX 有 5 种复位方式, 前四种为硬件复位:

- 1. 外部 RST 复位
- 低电压复位 LVR
- 上电复位 POR 3.
- 4. 看门狗 WDT 复位
- 软件复位 SW Reset

SC92F84HX的复位部分电路结构图如下:

SC92F84HX 复位电路图

Page 23 of 97 V1 0

7.3.1 外部 RST 复位

外部 RST 复位就是从外部 RST 给 SC92F84HX 一定宽度的复位脉冲信号,来实现 SC92F84HX 的复位。 用户在烧录程序前可通过烧录上位机软件配置 Customer Option 项将 P0.1 管脚配置为 RST (复位脚)使用。

7.3.2 低电压复位 LVR

SC92F84HX 内建了一个低电压复位电路。而复位的门限电压有 4 种选择: 4.3V、3.7V、2.9V、2.3V,缺省 值是用户写入的 Option 值。当 VDD 电压小于低电压复位的门限电压,且持续时间大于 TLVR 时,会产生复位。其 中, TLVR是 LVR 的消抖时间,约 30us。

OP_CTM0(C1H@FFH) Customer Option 寄存器 0 (读/写)

位编号	7	6	5	4	3	2	1	0
符号	ENWDT	ENXTL	SCLK	SCLKS[1:0]		DISLVR	LVRS	S[1:0]
读/写	读/写	读/写	读	读/写		读/写	读/	'写
上电初始值	n	n	1	n	n	n	r)

位编号	位符号	说明
2	DISLVR	LVR 使能设置 0: LVR 正常使用 1: LVR 无效
1~0	LVRS [1:0]	LVR 电压选择控制 11: 4.3 V 复位 10: 3.7V 复位 01: 2.9V 复位 00: 2.3V 复位

7.3.3 上电复位 POR

SC92F84HX内部有上电复位电路,当电源电压 VDD 达到 POR 复位电压时,系统自动复位。

7.3.4 看门狗复位 WDT

SC92F84HX 有一个 WDT, 其时钟源为内部的 32kHz 振荡器。用户可以通过编程器的 Code Option 选择是否 开启看门狗复位功能。

OP_CTM0 (C1H@FFH) Customer Option 寄存器 0 (读/写)

位编号	7	6	5	4	3	2	1	0
符号	ENWDT	ENXTL	SCLKS[1:0]		DISRST	DISLVR	LVRS[1:0]	
读/写	读/写	读/写	读/写		读/写	读/写	读/写	
上电初始值	n	n	ľ	٦	n	n	1	n

位编号	位符号	说明
7	ENWDT	WDT 开关(此位由系统将用户 Code Option 所设的值调入) 1: WDT 开始工作 0: WDT 关闭

WDTCON(CFH)看门狗控制寄存器(读/写)

		— 11 4 1 4 HH						
位编号	7	6	5	4	3	2	1	0
符号	-	-	-	CLRWDT	-	V	VDTCKS[2:0)]
读/写	-	•	-	读/写	ı		读/写	
上电初始值	Х	Х	Х	0	Х	0	0	0

Page 24 of 97 V1.0

位编号	位符号		说明				
4	CLRWDT	WDT 清 "0" 位 (写 1 有效) 1: WDT 计数器从 0 开始计数 此位由系统硬件自动置 0					
2~0	WDTCKS [2:0]	看门狗时钟选择 WDTCKS[2:0] 000 001 010 011 100 101 110	WDT溢出时间 500ms 250ms 125ms 62.5ms 31.5ms 15.75ms 7.88ms 3.94ms				
7~5, 3	-	保留	•				

7.3.5 软件复位

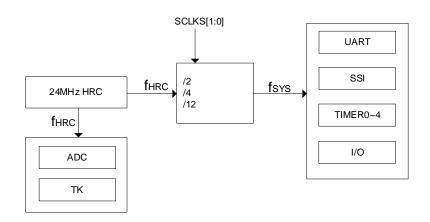
PCON (87h) 电源管理控制寄存器 (只写、*不可读*)

位编号	7	6	5	4	3	2	1	0
符号	SMOD	-	-	-	RST	-	STOP	IDL
读/写	只写	ı	-	-	只写	-	只写	只写
上电初始值	0	Х	Х	Х	n	Х	0	0

位编号	位符号	说明
3	RST	软件复位控制位: 写状态: 0:程序正常运行; 1:此位被写"1"后 CPU 立刻复位

7.3.6 复位初始状态

当 SC92F84HX 处于复位状态时,多数寄存器会回到其初始状态。看门狗 WDT 处于关闭的状态,PORT 口寄 存器为 FFh。程序计数器 PC 初始值为 0000h, 堆栈指针 SP 初始值为 07h。"热启动"的 Reset(如 WDT、LVR 等)不会影响到 SRAM, SRAM 值始终是复位前的值。SRAM 内容的丢失会发生在电源电压低到 RAM 无法保存 为止。


7.4 高频系统时钟电路

SC92F84HX 内建了一个振荡频率可调的高精度 HRC。HRC 出厂时被精确地调校至 24MHz@5V/25℃,用户 可以通过编程器的 Code Option 将系统时钟设置为 12/6/2MHz 使用。此 HRC 受工作的环境温度和工作电压影响 会有一定的漂移:跨越(2.9V~5.5V)及(-40~85°)应用环境,不超过±1%。

注意: ADC 和触控电路的时钟源固定为 f_{HRC} = 24MHz。

Page 25 of 97 V1.0

SC92F84HX 内部时钟关系

OP CTM0 (C1h@FFH) Customer Option 寄存器 0 (读/写)

<u> </u>	🔾 ,							
位编号	7	6	5	4	3	2	1	0
符号	ENWDT	ENXTL	SCLKS[1:0]		DISRST	DISLVR	LVRS[1:0]	
读/写	读/写	读/写	读/写		读/写	读/写	读	/写
上电初始值	n	n	1	n	n	n		

位编号	位符号	说明
6	ENXTL	外部 32.768kHz 晶振选择开关 0: 外部 32.768kHz 晶振关闭,P5.0、P5.1 有效; 1: 外部 32.768kHz 晶振打开,P5.0、P5.1 无效。
5~4	SCLKS[1:0]	系统时钟频率选择: 00:保留; 01:系统时钟频率为高频振荡器频率除以 2; 10:系统时钟频率为高频振荡器频率除以 4; 11:系统时钟频率为高频振荡器频率除以 12。

SC92F84HX 有一个特殊的功能:用户可修改 SFR 的值实现 HRC 频率在一定范围的调整。用户可以通过配置 OP_HRCR 寄存器实现,该寄存器的配置方法可参考章节: 5.2.1 Option 相关 SFR 操作说明。

OP_HRCR(83h@FFH)系统时钟改变寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号		OP_HRCR[7:0]						
读/写		读/写						
上电初始值	n	n	n	n	n	n	n	n

位编号	位符号	说明
7~0	OP_HRCR[7:0]	HRC 频率改变寄存器 用户可通过修改此寄存器的值实现高频振荡器频率 fhrc 的改变,进而改变 IC 的系统时钟频率 fsys: 1. OP_HRCR[7:0]上电后的初始值 OP_HRCR[s]是一个固定值,以确保 fhrc 为 24MHz,每颗 IC 的 OP_HRCR[s]都可能会有差异 2. 初始值为 OP_HRCR [s] 时 IC 的系统时钟频率 fsys可通过 Option 项设置为准确的 12/6/2MHz,OP_HRCR [7:0]每改变 1 则 fsys 频率改变约 0.23% OP_HRCR [7:0]和 fsys 输出频率的关系如下:

Page 26 of 97 V1.0 http://www.socmcu.com

位编号	位符号		说明
		OP_HRCR [7:0]值	fsys 实际输出频率(12M 为例)
		OP_HRCR [s]-n	12000*(1-0.23%*n)kHz
		OP_HRCR [s]-2	12000*(1-0.23%*2)=11944.8kHz
		OP_HRCR [s]-1	12000*(1-0.23%*1)=11972.4kHz
		OP_HRCR [s]	12000kHz
		OP_HRCR [s]+1	12000*(1+0.23%*1)=12027.6kHz
		OP_HRCR [s]+2	12000*(1+0.23%*2)=12055.2kHz
		OP_HRCR [s]+n	12000*(1+0.23%*n)kHz
		注意:	
		1. IC 每次上电后 OP_HI	RCR[7:0]的值都是高频振荡器频率 fhrc 最接近
		24MHz 的值;用户可借助	b EEPROM 在每次上电后修正 HRC 的值以让
		IC 的系统时钟频率 fsys I	作在用户需要的频率;
		2. 为保证 IC 工作可靠,	IC 最高工作频率请勿超过 12MHz 的 10%,即
		13.2MHz;	
		3. 请用户确认 HRC 频率	的改变不会影响其它功能。

7.5 低频振荡器及低频时钟定时器

SC92F84HX 内建一个频率为 32kHz 的 RC 及 32.768kHz 晶体振荡电路,都可作为低频时钟定时器 Base Timer 和 WDT 的时钟源。开启 Base Timer 或使能 WDT 均可启动 32kHz 低频振荡器。

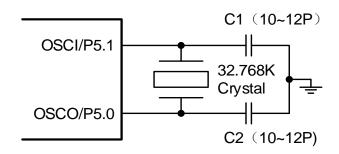
低频时钟定时器 Base Timer 可以把 CPU 从 STOP mode 唤醒,并且产生中断。

BTMCON (FBH) 低频定时器控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	ENBTM	BTMIF	-	-	BTMFS[3:0]			
读/写	读/写	读/写	-	-	读/写			
上电初始值	0	0	Х	Х	0	0	0	0

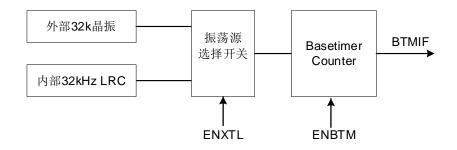
位编号	位符号	说明
		低频 Base Timer 启动控制
7	ENBTM	0: Base Timer 及其时钟源不启动
		1: Base Timer 及其时钟源启动
6	BTMIF	Base Timer 中断申请标志
0	DIWIIF	当 CPU 接受 Base Timer 的中断后,此标志位会被硬件自动清除。
		低频时钟中断频率选择
		0000: 每 15.625ms 产生一个中断
		0001: 每 31.25ms 产生一个中断
		0010: 每 62.5ms 产生一个中断
		0011: 每 125ms 产生一个中断
		0100: 每 0.25s 产生一个 中断
3~0	BTMFS [3:0]	0101:每 0.5s 产生一个 中断
		0110: 每 1.0s 产生一个 中断
		0111: 每 2.0s 产生一个 中断
		1000: 每 4.0s 产生一个 中断
		1001: 每 8.0s 产生一个 中断
		1010: 每 16.0s 产生一个 中断
		1011: 每 32.0s 产生一个 中断

Page 27 of 97 V1.0


位编号	位符号	说明
		1100: 每 64.0s 产生一个 中断
		1101:每 128.0s 产生一个 中断
		1110: 每 256.0s 产生一个中断
		1111: 保留
5~4	-	保留

OP_CTM0 (C1H@FFH) Customer Option 寄存器 0 (读/写)

位编号	7	6	5	4	3	2	1	0
符号	ENWDT	ENXTL	SCLK	SCLKS[1:0]		DISLVR	LVRS[1:0]	
读/写	读/写	读/写	读	读/写		读/写	读	/写
上电初始值	n	n	r	n		n	r	ı


位编号	位符号	说明
		外部 32.768kHz 晶振选择开关
6	ENXTL	0:外部 32.768kHz 晶振关闭,P5.0、P5.1 有效;
		1:外部 32.768kHz 晶振打开,P5.0、P5.1 无效。

P5.0/P5.1 外接 32.768kHz 振荡器作为 BaseTimer 使用的接法电路如下:

32.768kHz 外部晶振连接图

Base Timer 内外部振荡选择关系图如下:

Base Timer 结构图

7.6 STOP 模式和 IDLE 模式

Page 28 of 97 V1.0 http://www.socmcu.com

SC92F84H3/84H9/84H2

高速 1T 8051 内核 20 路高灵敏触控 Flash MCU

SC92F84HX 提供了一个特殊功能寄存器 PCON,配置该寄存器的 bit0 和 bit1 可控制 MCU 进入不同的工作模式。

对 PCON.1 写入 1,内部的高频系统时钟就会停止,进到 STOP 模式,达到省电功能。在 STOP 模式下,用户可以通过外部中断 INTO~2,低频时钟中断和 TK 中断把 SC92F84HX 唤醒,也可以通过外部复位将 STOP 唤醒。

对 PCON.0 写入 1,程序停止运行,进入 IDLE 模式,但外部设备及时钟继续运行,进入 IDLE 模式前所有 CPU 状态都被保存。IDLE 模式可由任何中断唤醒。

PCON (87H) 电源管理控制寄存器 (只写、*不可读*)

	(COM H - 747-4-14 H H () (4) 4 ()							
位编号	7	6	5	4	3	2	1	0
符号	SMOD	-	-	-	RST	-	STOP	IDL
读/写	只写	-	-	-	只写	-	只写	只写
上电初始值	0	х	х	х	n	х	0	0

位编号	位符号	说明
1	STOP	STOP 模式控制 0: 正常操作模式 1: 节能模式, 高频振荡器停止工作, 低频振荡器及 WDT 可根据设定 选择工作与否。
0	IDL	IDLE 模式控制 0: 正常操作模式 1: 节能模式,程序停止运行,但外部设备及时钟继续运行,进入IDLE模式前所有 CPU 状态都被保存。

注意:配置 MCU 进入 STOP 或 IDLE 模式时,对 PCON 寄存器进行配置操作的语句后面要加上 8 个 NOP 指令,不能直接跟其它指令,否则在唤醒后无法正常执行后续的指令!

例如:设置 MCU 进入 STOP 模式:

C语言例程:

#include"intrins.h"

PCON |= 0x02; //PCON 的 bit1 STOP 位写 1, 配置 MCU 进入 STOP 模式

nop(); //至少需要 8 个_nop_()

nop();

nop();

nop();

nop();

nop(),

nop(); _nop_();

nop();

.

汇编例程:

ORL PCON,#02H ; PCON 的 bit1 STOP 位写 1, 配置 MCU 进入 STOP 模式

NOP ; 至少需要 8 个 NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP.....

Page 29 of 97

8 中央处理单元 CPU 及指令系统

8.1 CPU

SC92F84HX 所用的 CPU 是一个高速的 1T 标准 8051 内核,其指令完全兼容传统 8051 内核单片机。

8.2 寻址方式

SC92F84HX 的 1T 8051 CPU 指令的寻址方式有: ①立即寻址②直接寻址③间接寻址④寄存器寻址⑤相对寻 址⑥变址寻址⑦位寻址

8.2.1 立即寻址

立即寻址也称为立即数寻址,它是在指令操作数中直接给出参加运算的操作数,指令举例如下: (这条指令是将立即数 50H 送到累加器 A 中)

8.2.2 直接寻址

在直接寻址方式中,指令操作数域给出的是参加运算操作数的地址。直接寻址方式只能用来表示特殊功能寄 存器、内部数据寄存器和位地址空间。其中特殊功能寄存器和位地址空间只能用直接寻址方式访问。举例如下:

ANL 50H, #91H (表示 50H 单元中的数与立即数 91H 相"与",结果存放在 50H 单元中。其中 50H 为直 接地址,表示内部数据寄存器 RAM 中的一个单元。)

8.2.3 间接寻址

间接寻址采用 R0 或 R1 前添加 "@"符号来表示。假设 R1 中的数据是 40H,内部数据存储器 40H 单元的数 据为 55H,则指令为

MOV A, @R1 (把数据 55H 传送至累加器 A)。

8.2.4 寄存器寻址

寄存器寻址是对选定的工作寄存器 R7~R0、累加器 A、通用寄存器 B、地址寄存器和进位 C 中的数进行操作。 其中寄存器 R7~R0 由指令码的低 3 位表示,ACC、B、DPTR 及进位位 C 隐含在指令码中。因此,寄存器寻址也 包含一种隐含寻址方式。寄存器工作区的选择由程序状态字寄存器 PSW 中的 RS1、RS0 来决定。指令操作数指 定的寄存器均指当前工作区的寄存器。

INC R0 是指(R0)+1→R0

8.2.5 相对寻址

相对寻址是将程序计数器 PC 中的当前值与指令第二字节给出的数相加,其结果作为转移指令的转移地址。 转移地址也成为转移目的地址,PC 中的当前值成为基地址,指令第二字节给出的数成为偏移量。由于目的地址是 相对于 PC 中的基地址而言,所以这种寻址方式成为相对寻址。偏移量为带符号的数,所能表示的范围为+127~-128。这种寻址方式主要用于转移指令。

JC \$+50H

表示若进位位 C 为 0,则程序计数器 PC 中的内容不改变,即不转移。若进位位 C 为 1,则以 PC 中的当前值及基 地址,加上偏移量 50H 后所得到的结果作为该转移指令的目的地址。

8.2.6 变址寻址

在变址寻址方式中,指令操作数指定一个存放变址基址的变址寄存器。变址寻址时,偏移量与变址基值相加, 其结果作为操作数的地址。变址寄存器有程序计数器 PC 和地址寄存器 DPTR。

Page 30 of 97 V1 0 http://www.socmcu.com

MOVC A, @A+DPTR

表示累加器 A 为偏移量寄存器,其内容与地址寄存器 DPTR 中的内容相加,其结果作为操作数的地址,取出 该单元中的数送入累加器A中。

8.2.7 位寻址

位寻址是指对一些可进行位操作的内部数据存储器 RAM 和特殊功能寄存器进行位操作时的寻址方式。在进行 位操作时,借助于进位位 C 作为位操作累加器,指令操作数直接给出该位的地址,然后根据操作码的性质对该位 进行位操作。位地址与字节直接寻址中的字节地址编码方式完全一样,主要由操作指令的性质加以区分,使用时 应特别注意。

MOV C, 20H (将地址为 20H 的位操作寄存器值送入进位位 C 中)

Page 31 of 97 V1.0

9 INTERRUPT 中断

SC92F84HX 单片机提供 12 个中断源: Timer0~5, INT0, INT1, ADC, UART, SSI, Base Timer, TK。 这 12 个中断源分为 2 个中断优先级, 并可以单独分别设置为高优先级或者低优先级。两个外部中断可以分别设定 其中每个中断源的触发条件为上升、下降或上下沿,每个中断分别有独立的优先级设置位、中断标志、中断向量 和使能位,总的中断使能位 EA 可以实现所有中断的打开或者关闭。

9.1 中断源、向量

SC92F84HX的中断源、中断向量、及相关控制位列表如下:

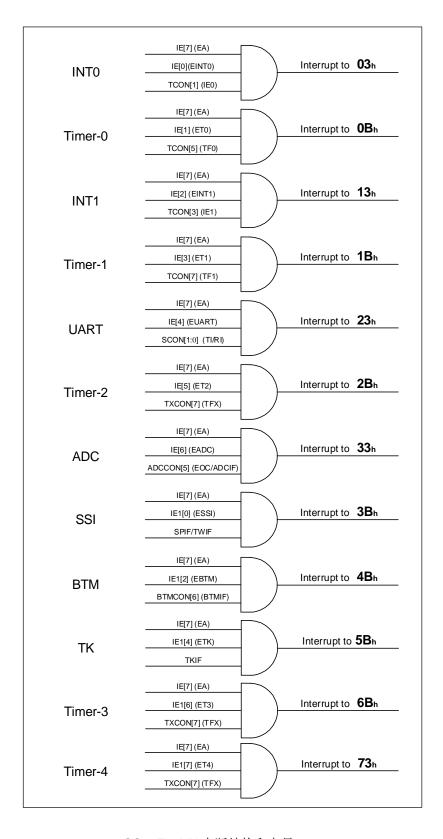
中断源	中断发生 时间	中断标志	中断使能 控制	中断优先权 控制	中断向量	查询优先级	中断号 (C51)	标志清除 方式	能否唤醒 STOP
INT0	外部中断 0 条件符合	IE0	EINT0	IPINT0	0003H	1 (高)	0	H/W Auto	能
Timer0	Timer0 溢 出	TF0	ET0	IPT0	000BH	2	1	H/W Auto	不能
INT1	外部中断 1 条件符合	IE1	EINT1	IPINT1	0013H	3	2	H/W Auto	能
Timer1	Timer1 溢 出	TF1	ET1	IPT1	001BH	4	3	H/W Auto	不能
UART	接收或发送 完成	RI/TI	EUART	IPUART	0023H	5	4	必须用户 清除	不能
Timer2	Timer2 溢 出	TFX	ET2	IPT2	002BH	6	5	必须用户 清除	不能
ADC	ADC 转换 完成	ADCIF	EADC	IPADC	0033H	7	6	必须用户 清除	不能
SSI	接收或发送 完成	SPIF/TWIF	ESSI	IPSSI	003BH	8	7	必须用户 清除	不能
ВТМ	Base timer 溢出	BTMIF	EBTM	IPBTM	004BH	10	9	H/W Auto	能
TK	Touch Key 计数器溢出	TKIF	ETK	IPTK	005B	12	11	H/W Auto	能
Timer3	Timer3 溢 出	TFX	ET3	IPT3	006BH	14	13	必须用户 清除	不能
Timer4	Timer4 溢 出	TFX	ET4	IPT4	0073H	15	14	必须用户 清除	不能

在 EA=1 及各中断使能控制为 1 的情况下,各中断发生情况如下:

定时器中断: Timer0 和 Timer1 溢出时会产生中断并将中断标志 TF0 和 TF1 置为"1", 当单片机执行该定 时器中断时,中断标志 TF0 和 TF1 会被硬件自动清"0"。Timer2/3/4 溢出时会产生中断并将中断标志 TFX 置为 "1",在 Timer2/3/4 中断发生后,硬件并不会自动清除 TFX 位,此 bit 必须由使用者的软件负责清除。

ADC 中断: ADC 中断的发生时间为 ADC 转换完成时,其中断标志就是 ADC 转换结束标志 ADCIF (ADCCON.5)。使用者在 ADC 中断发生之后,进入中断服务程序时,必须用软件去清除 ADCIF。

SSI 中断: 当 SSI 接收或发送一帧数据完成时 SPIF/TWIF 位会被硬件自动置"1", SSI 中断产生。当单片机 执行该 SSI 中断时,中断标志 SPIF/TWIF 必须由使用者的软件负责清除。


外部中断 INTO, INT1: 当外部中断口有中断条件发生时,外部中断就发生了。INTO 有四个外部中断源, INT1 有四个外部中断源用户可以根据需要设成上沿、下沿或者双沿中断,可通过设置 SFR(INTxF 和 INTxR)来 实现。用户可通过 IP 寄存器来设置每个中断的优先级级别。外部中断 INT0, INT1 还可以唤醒单片机的 STOP。

Page 32 of 97 V1 0

9.2 中断结构图

SC92F84HX的中断结构如下图所示:

SC92F84HX 中断结构和向量

9.3 中断优先级

SC92F84HX 单片机的中断具有两个中断优先级,这些中断源的请求可编程为高优先级中断或者低优先级中 断,即可实现两级中断服务程序的嵌套。一个正在执行的低优先级中断能被高优先级中断请求所中断,但不能被 另一个同一优先级的中断请求所中断,一直执行到结束,遇到返回指令 RETI,返回主程序后再执行一条指令才能 响应新的中断请求。

也就是说:

- ① 低优先级中断可被高优先级中断请求所中断,反之不能;
- ② 任何一种中断,在响应过程中,不能被同一优先级的中断请求所中断。 中断查询顺序: SC92F84HX 单片机的同一优先级中断,如果同时来几个中断,则中断响应的优先顺序同 C51 中的中断查询号相同,即查询号小的会优先响应,查询号大的会慢响应。

9.4 中断处理流程

当一个中断产生并且被 CPU 响应,则主程序运行被中断,将执行下述操作

- ① 当前正在执行的指令执行完;
- ② PC 值被压入堆栈,保护现场;
- ③ 中断向量地址载入程序计数器 PC;
- 4 执行相应的中断服务程序;
- (5) 中断服务程序结束并 RETI:

⑥ 将 PC 值退栈,并返回执行中断前的程序。 在此过程中,系统不会立即执行其它同一优先级的中断,但会保留所发生的中断请求,在当前中断处理结束 后, 转去执行新的中断请求。

9.5 中断相关 SFR 寄存器

IE(A8H)中断使能寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	EA	EADC	ET2	EUART	ET1	EINT1	ET0	EINT0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	EA	中断使能的总控制 0: 关闭所有的中断
		1: 打开所有的中断
		ADC 中断使能控制
6	EADC	0: 关闭 ADC 中断
		1: 允许 ADC 转换完成时产生中断
		Timer2 中断使能控制
5	ET2	0: 关闭 TIMER2 中断
		1: 允许 TIMER2 中断
		UART中断使能控制
4	EUART	0: 关闭 UART 中断
		1: 允许 UART 中断
		Timer1 中断使能控制
3	ET1	0: 关闭 TIMER1 中断
		1: 允许 TIMER1 中断
2	EINT1	外部中断 1 使能控制
	-::	0: 关闭 INT1 中断

Page 34 of 97 V1 0 http://www.socmcu.com

位编号	位符号	说明
		1: 打开 INT1 中断
		Timer0 中断使能控制
1	ET0	0: 关闭 TIMER0 中断
		1: 允许 TIMERO 中断
		外部中断 0 使能控制
0	EINT0	0: 关闭 INTO 中断
		1: 打开 INTO 中断

IP(B8H)中断优先级控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	IPADC	IPT2	IPUART	IPT1	IPINT1	IPT0	IPINT0
读/写	-	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	Х	0	0	0	0	0	0	0

位编号	位符号	说明
		ADC 中断优先权选择
6	IPADC	0: ADC 中断优先权为低
		1: ADC 中断优先权为高
		Timer2 中断优先权选择
5	IPT2	0: Timer2 中断优先权为低
		1: Timer2 中断优先权为高
		UART 中断优先权选择
4	IPUART	0: UART 中断优先权为低
		1: UART 中断优先权为高
		Timer1 中断优先权选择
3	IPT1	0: Timer1 中断优先权为低
		1: Timer1 中断优先权为高
		INT1 计数器中断优先权选择
2	IPINT1	0: INT1 中断优先权为低
		1: INT1 中断优先权为高
		Timer0 中断优先权选择
1	IPT0	0: Timer0 中断优先权为低
		1: Timer0 中断优先权为高
		INTO 计数器中断优先权选择
0	IPINT0	0: INTO 中断优先权为低
		1: INTO 中断优先权为高
7	-	保留

IE1(A9H)中断控制寄存器 1(读/写)

位编号	7	6	5	4	3	2	1	0
符号	ET4	ET3	-	ETK	-	EBTM	-	ESSI
读/写	读写	读写	-	读写	-	读/写	-	读/写
上电初始值	0	0	Х	0	Х	0	Х	0

位编号	位符号	说明
7	ET4	Timer4 中断使能控制 0: 关闭 Timer4 中断 1: 允许 Timer4 中断

Page 35 of 97 V1.0

位编号	位符号	说明
		Timer3 中断使能控制
6	ET3	0: 关闭 Timer3 中断
		1: 允许 Timer3 中断
		Touch Key 中断使能控制
4	ETK	0: 关闭 Touch Key 中断
		1: 打开 Touch Key 中断
		Base Timer 中断使能控制
2	EBTM	0: 关闭 Base Timer 中断
		1: 允许 Base Timer 中断
		三合一串口中断使能控制
0	ESSI	0: 关闭串口中断
		1: 允许串口中断
5, 3, 1	-	保留

IP1(B9H)中断优先级控制寄存器 1(读/写)

	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
位编号	7	6	5	4	3	2	1	0
符号	IPT4	IPT3	-	IPTK	-	IPBTM	-	IPSSI
读/写	读/写	读/写	-	读/写	-	读/写	-	读/写
上电初始值	0	0	Х	0	Х	0	Х	0

位编号	位符号	说明
7	IPT4	Timer4 中断优先权选择 0: Timer4 中断优先权为低 1: Timer4 中断优先权为高
6	IPT3	Timer3 中断优先权选择 0: Timer3 中断优先权为低 1: Timer3 中断优先权为高
4	IPTK	Touch Key 中断优先权选择 0: Touch Key 中断优先权为低 1: Touch Key 中断优先权为高
2	IPBTM	Base Timer 中断优先权选择 0: Base Timer 中断优先权为低 1: Base Timer 中断优先权为高
0	IPSSI	三合一串口中断优先权选择 0: SSI 中断优先权为低 1: SSI 中断优先权为高
5, 3, 1	-	保留

TCON(88H)定时器控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	TF1	TR1	TF0	TR0	IE1	-	IE0	-
读/写	读/写	读/写	读/写	读/写	读/写	-	读/写	-
上电初始值	0	0	0	0	0	Х	0	Х

位编号	位符号	说明
3	IE1	INT1 溢出中断请求标志。INT1 产生溢出,发生中断时,硬件将 IE1 置为"1",申请中断,CPU 响应时,硬件清"0"。
1	IE0	INT0 溢出中断请求标志。INT0 产生溢出,发生中断时,硬件将 IE0 置为"1",申请中断,CPU 响应时,硬件清"0"。
2, 0	-	保留

Page 36 of 97 V1.0

SC92F84H3/84H9/84H2

高速 1T 8051 内核 20 路高灵敏触控 Flash MCU

INTOF (BAH) INTO 下降沿中断控制寄存器 (读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	INT0F3	INT0F2	INT0F1	INT0F0
读/写	-	-	-	-	读/写	读/写	读/写	读/写
上电初始值	Х	Х	Х	Х	0	0	0	0

位编号	位符号	说明
3~0	INT0Fn (n=0~3)	INTO 下降沿中断控制 0: INTOn 下降沿中断关闭 1: INTOn 下降沿中断使能
7~4	-	保留

INTOR (BBH) INTO 上升沿中断控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	INT0R3	INT0R2	INT0R1	INT0R0
读/写	-	-	-	-	读/写	读/写	读/写	读/写
上电初始值	Х	Х	Х	Х	0	0	0	0

位编号	位符号	说明
3~0	INT0Rn (n=0~3)	INTO 上升沿中断控制 0: INTOn 上升沿中断关闭 1: INTOn 上升沿中断使能
7~4	-	保留

INT1F(BCH) INT1 下降沿中断控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	INT1F3	INT1F2	INT1F1	INT1F0
读/写	-	-	-	-	读/写	读/写	读/写	读/写
上电初始值	Х	Х	Х	Х	0	0	0	0

位编号	位符号	说明
3~0	INT1Fn (n=0~3)	INT1 下降沿中断控制 0: INT1n 下降沿中断关闭 1: INT1n 下降沿中断使能
7~4	-	保留

INT1R (BDH) INT1 上升沿中断控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	INT1R3	INT1R2	INT1R1	INT1R0
读/写	-	-	-	-	读/写	读/写	读/写	读/写
上电初始值	Х	Х	Х	Х	0	0	0	0

位编号	位符号	说明
3~0	INT1Rn (n=0~3)	INT1 上升沿中断控制 0: INT1n 上升沿中断关闭 1: INT1n 上升沿中断使能
7~4	-	保留

Page 37 of 97 V1.0

10 定时器 TIMER0、TIMER1

SC92F84HX 单片机内部的五个 16 位定时器/计数器, 其中 Timer0/1 有独立的寄存器组, Timer2~4 共用寄存 器组。本章节主要为 Timer0~1 的功能介绍,Timer2~4 详见下一章节。它们具有计数方式和定时方式两种工作模 式。特殊功能寄存器 TMOD 中有一个控制位 C/Tx 来选择 T0 和 T1 是定时器还是计数器。它们本质上都是一个加 法计数器,只是计数的来源不同。定时器的来源为系统时钟或者其分频时钟,但计数器的来源为外部管脚的输入 脉冲。只有在 TRx=1 的时候, T0 和 T1 才会被打开计数。

计数器模式下,P1.0/T0 和 P0.0/T1 管脚上的每一个脉冲,T0 和 T1 的计数值分别增加 1。

定时器模式下,可通过特殊功能寄存器 TMCON 来选择 TO 和 T1 的计数来源是 fsys/12 或 fsys (fsys 为分频后 的系统时钟)。

定时器/计数器 T0 有 4 种工作模式,定时器/计数器 T1 有 3 种工作模式(模式三不存在):

- ① 模式 0: 13 位定时器/计数器模式
- ② 模式 1: 16 位定时器/计数器模式
- ③ 模式 2: 8位自动重载模式
- ④ 模式 3:两个 8 位定时器/计数器模式 在上述模式中,T0 和 T1 的模式 0、1、2 都相同,模式 3 不同。

10.1 T0 和 T1 相关特殊功能寄存器

符号	地址	说明	7	6	5	4	3	2	1	0	Reset 值
TCON	88H	定时器控制寄存器	TF1	TR1	TF0	TR0	IE1	-	IE0	-	00000x0xb
TMOD	89H	定时器工作模式寄存器	-	C/T1	M11	M01	-	C/T0	M10	M00	x000x000b
TL0	8AH	定时器 0 低 8 位		TL0[7:0]				0000000b			
TL1	8BH	定时器 1 低 8 位				TL1	[7:0]				0000000b
TH0	8CH	定时器 0 高 8 位				THO	[7:0]				0000000b
TH1	8DH	定时器 1 高 8 位		TH1[7:0]				0000000b			
TMCON	8EH	定时器频率控制寄存器	-	-	-	T30 S	-	T20 S	T1FD	T0FD	xxx0x000b

各寄存器的解释说明如下:

TCON(88H)定时器控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	TF1	TR1	TF0	TR0	IE1	-	IE0	-
读/写	读/写	读/写	读/写	读/写	读/写	-	读/写	-
上电初始值	0	0	0	0	0	Х	0	Х

位编号	位符号	说明
7	TF1	T1 溢出中断请求标志。T1 产生溢出,发生中断时,硬件将 TF1 置为 "1",申请中断,CPU 响应时,硬件清"0"。
6	TR1	定时器 T1 的运行控制位。此位由软件置 1 和清 0。当 TR1=1 时,允许 T1 开始计数。TR1=0 时禁止 T1 计数。
5	TF0	T0 溢出中断请求标志。T0 产生溢出,发生中断时,硬件将 TF0 置为 "1",申请中断,CPU 响应时,硬件清"0"。
4	TR0	定时器 T0 的运行控制位。此位由软件置位和清 0。当 TR0=1 时,允许 T0 开始计数。TR0=0 时禁止 T0 计数。

Page 38 of 97 V1 0 http://www.socmcu.com

SC92F84H3/84H9/84H2

宣油 1T Q05	1 内核 20) 路高灵敏触控	Elach	MCII
向迷 II OU	门内恢乙	丿跗同火墩熈拴	riasn	MCO

位编号	位符号	说明
2, 0	-	保留

TMOD(89H)定时器工作模式寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	C/T1	M11	M01	-	C/T0	M10	M00
读/写	-	读/写	读/写	读/写	-	读/写	读/写	读/写
上电初始值	Х	0	0	0	Х	0	0	0
		Т	1			Т	0	

位编号	位符号	说明
		TMOD[6]控制定时器 1
6	C/T1	0: 定时器, T1 计数来源于 fsys 分频
		1: 计数器, T1 计数来源于外部管脚 T1/P0.0
		定时器/计数器 1 模式选择
		00: 13 位定时器/计数器, TL1 高 3 位无效
5~4	M11, M01	01: 16 位定时器/计数器, TL1 和 TH1 全有效
		10:8 位自动重载定时器,溢出时将 TH1 存放的值自动重装入 TL1
		11: 定时器/计数器 1 无效(停止计数)
		TMOD[2]控制定时器 0
2	C/T0	0: 定时器, T0 计数来源于 fsys 分频
		1: 计数器, T0 计数来源于外部管脚 T0/P1.0
		定时器/计数器 0 模式选择
		00: 13 位定时器/计数器, TL0 高 3 位无效
		01: 16 位定时器/计数器, TL0 和 TH0 全有效
1~0	M10, M00	10:8位自动重载定时器,溢出时将 TH0 存放的值自动重装入 TL0
		11: 定时器 0 此时作为双 8 位定时器/计数器。TLO 作为一个 8 位定时
		器/计数器,通过标准定时器 0 的控制位控制; TH0 仅作为一个 8 位定
		时器,由定时器1的控制位控制。
7, 3	-	保留

TMOD 寄存器中 TMOD[0]~TMOD[2]是设置 T0 的工作模式; TMOD[4]~TMOD[6]是设置 T1 的工作模式。 定时器和计数器 Tx 功能由特殊功能寄存器 TMOD 的控制位 C/Tx 来选择,M0x 和 M1x 都是用来选择 Tx 的工 作模式。TRx 作为 T0 和 T1 的开关控制,只有 TRx=1 时 T0 和 T1 才打开。

TMCON(8EH)定时器频率控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	T3OS	-	T2OS	T1FD	T0FD
读/写	-	-	-	读/写	-	读/写	读/写	读/写
上电初始值	Х	Х	Х	0	Х	0	0	0

位编号	位符号	说明
1	T1FD	T1 输入频率选择控制 0: T1 频率源自于 f _{SYS} /12 1: T1 频率源自于 f _{SYS}
0	T0FD	T0 输入频率选择控制 0: T0 频率源自于 fsys/12 1: T0 频率源自于 fsys

IE(A8H)中断使能寄存器(读/写)

Page 39 of 97

位编号	7	6	5	4	3	2	1	0
符号	EA	EADC	ET2	-	ET1	EINT1	ET0	EINTO
读/写	读/写	读/写	读/写	-	读/写	读/写	读/写	读/写
上电初始值	0	0	0	Х	0	0	0	0

位编号	位符号	说明
		Timer1 中断使能控制
3	ET1	0: 关闭 TIMER1 中断
		1: 允许 TIMER1 中断
		Timer0 中断使能控制
1	ET0	0: 关闭 TIMER0 中断
		1: 允许 TIMER0 中断

IP(B8H)中断优先级控制寄存器(读/写)

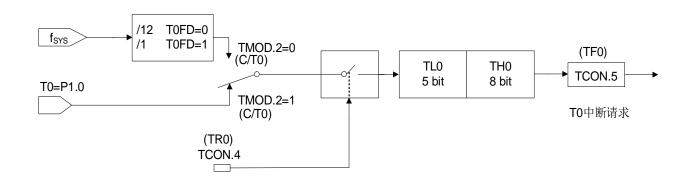
			* :					
位编号	7	6	5	4	3	2	1	0
符号	-	IPADC	IPT2	-	IPT1	IPINT1	IPT0	IPINT0
读/写	-	读/写	读/写	-	读/写	读/写	读/写	读/写
上电初始值	х	0	0	х	0	0	0	0

位编号	位符号	说明
3	IPT1	Timer1 中断优先权 0: 设定 Timer 1 的中断优先权是"低" 1: 设定 Timer 1 的中断优先权是"高"
1	IPT0	Timer0 中断优先权 0: 设定 Timer 0 的中断优先权是"低" 1: 设定 Timer 0 的中断优先权是"高"

10.2 T0 工作模式

通过对寄存器 TMOD 中的 M10、M00(TMOD[1]、TMOD[0])的设置,定时器/计数器 0 可实现 4 种不同的 工作模式。

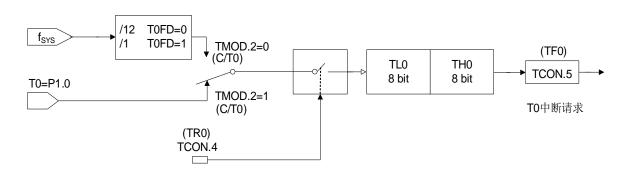
工作模式 0: 13 位计数器/定时器。


THO 寄存器存放 13 位计数器/定时器的高 8 位(TH0.7~TH0.0), TLO 存放低 5 位(TL0.4~TL0.0)。TLO 的 高三位(TL0.7~TL0.5)是不确定值,读取时应被忽略掉。当 13 位定时器/计数器递增溢出时,系统会将定时器溢 出标志 TF0 置 1。如果定时器 0 中断被允许,将会产生一个中断。

C/T0 位选择计数器/定时器的时钟输入源。如果 C/T0=1, 定时器 0 输入脚 T0 (P1.0)的电平从高到低的变 化,会使定时器 0 数据寄存器加 1。如果 C/T0=0,选择系统时钟的分频为定时器 0 的时钟源。

当 TR0 置 1 打开定时器 TO。TR0 置 1 并不强行复位定时器, 意味着如果 TR0 置 1, 定时器寄存器将从上次 TR0 清 0 时的值开始计数。所以,在允许定时器之前,应该设定定时器寄存器的初始值。

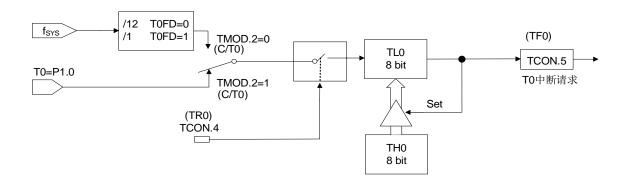
当作为定时器应用时,可配置 TOFD 来选择时钟源的分频比例。


Page 40 of 97 V1.0

定时器/计数器工作模式 0: 13 位定时器/计数器

工作模式 1: 16 位计数器/定时器

除了使用 16 位(TL0 的 8 位数据全部有效)计数器/定时器之外,模式 1 和模式 0 的运行方式相同。打开和配置计数器/定时器方式也相同。



定时器/计数器工作模式 0: 16 位定时器/计数器

工作模式 2: 8位自动重载计数器/定时器

在工作模式 2 中,定时器 0 是 8 位自动重载计数器/定时器。TL0 存放计数值,TH0 存放重载值。当在 TL0 中的计数器溢出至 0x00 时,定时器溢出标志 TF0 被置 1,寄存器 TH0 的值被重载入寄存器 TL0 中。如果定时器中断使能,当 TF0 置 1 时将产生一个中断,但在 TH0 中的重载值不会改变。在允许定时器正确计数开始之前,TL0 必须初始化为所需要的值。

除了自动重载功能外,工作模式 2 中的计数器/定时器的使能和配置方式同模式 0 和 1 是相同的。 当作为定时器应用时,可配置寄存器 TMCON.0(T0FD)来选择定时器时钟源被系统时钟 fsys 分频的比例。

定时器/计数器工作模式 2: 自动重载的 8 位定时器/计数器

Page 41 of 97 V1.0 http://www.socmcu.com

工作模式 3: 两个 8 位计数器/定时器 (仅限于定时器 0)

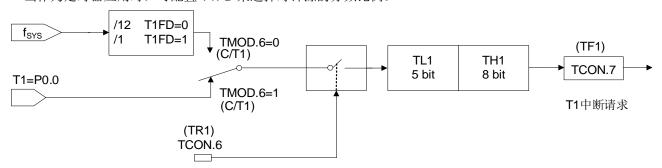
在工作模式 3 中,定时器 0 用作两个独立的 8 位计数器/定时器,分别由 TL0 和 TH0 控制。TL0 通过定时器 0 的控制位(在 TCON 中)和状态位(在 TMOD 中): TR0、C/T0、TF0 控制。定时器 0 可通过 T0 的 TMOD.2(C/T0)来选择是定时器模式还是计数器模式。

TH0 通过定时器 1 的控制 TCON 来设置相关的控制,但 TH0 仅被限定为定时器模式,无法通过 TMOD.2 (C/T0) 来设定为计数器模式。TH0 由定时器控制位 TR1 的控制使能,需设定 TR1=1。当发生溢出及产生中断时,TF1 会置 1,并按 T1 发生中断来进行相应的处理。

在 T0 被设为工作模式 3 时,TH0 定时器占用了 T1 的中断资源及 TCON 中寄存器,T1 的 16 位计数器会停止计数,相当于"TR1=0"。当采用 TH0 定时器工作时,需设置 TR1=1。

10.3 T1 工作模式

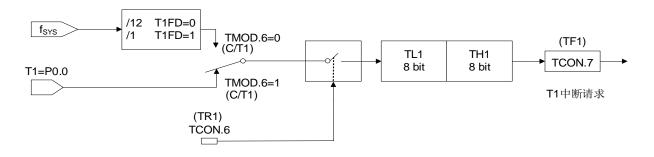
通过对寄存器 TMOD 中的 M11、M01(TMOD[5]、TMOD[4])的设置,定时器/计数器 1 可实现 3 种不同的工作模式。


工作模式 0: 13 位计数器/定时器。

TH1 寄存器存放 13 位计数器/定时器的高 8 位(TH1.7~TH1.0);TL1 存放低 5 位(TL1.4~TL1.0)。TL1 的高三位(TL1.7~TL1.5)是不确定值,读取时应被忽略掉。当 13 位定时器计数器递增溢出时,系统会将定时器溢出标志 TF1 置 1。如果定时器 1 中断被允许,将会产生一个中断。C/T1 位选择计数器/定时器的时钟源。

如果 C/T1=1, 定时器 1 输入脚 T1 (P0.0) 的电平从高到低的变化, 会使定时器 1 数据寄存器加 1。如果 C/T1=0, 选择系统时钟的分频为定时器 1 的时钟源。

TR1 置 1 打开定时器。TR1 置 1 并不强行复位定时器,意味着如果 TR1 置 1,定时器寄存器将从上次 TR1 清 0 时的值开始计数。所以,在允许定时器之前,应该设定定时器寄存器的初始值。


当作为定时器应用时,可配置 T1FD 来选择时钟源的分频比例。

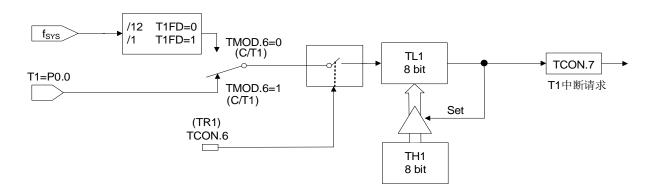
定时器/计数器工作模式 0: 13 位定时器/计数器

工作模式 1: 16 位计数器/定时器

除了使用 16 位(TL1 的 8 位数据全部有效)计数器/定时器之外,模式 1 和模式 0 的运行方式相同。打开和配置计数器/定时器方式也相同。

定时器/计数器工作模式 0: 16 位定时器/计数器

Page 42 of 97 V1.0 http://www.socmcu.com


SC92F84H3/84H9/84H2

高速 1T 8051 内核 20 路高灵敏触控 Flash MCU

工作模式 2: 8位自动重载计数器/计数器

在工作模式 2 中, 定时器 1 是 8 位自动重载计数器/定时器。TL1 存放计数值, TH1 存放重载值。当在 TL1 中的计数器溢出至 0x00 时,定时器溢出标志 TF1 被置 1,寄存器 TH1 的值被重载入寄存器 TL1 中。如果定时 器中断使能,当 TF1 置 1 时将产生一个中断,但在 TH1 中的重载值不会改变。在允许定时器正确计数开始之 前,TL1必须初始化为所需要的值。

除了自动重载功能外,工作模式2中的计数器/定时器的使能和配置方式同方式0和1是相同的。 当作为定时器应用时,可配置寄存器 TMCON.4(T1FD)来选择定时器时钟源被系统时钟 fsys 分频的比例。

定时器/计数器工作模式 2: 自动重载的 8 位定时器/计数器

Page 43 of 97 V1.0

11 定时器 TIMER2/3/4

SC92F84HX 单片机内部的 Timer2/3/4 是三个独立的 Timer, 其中 Timer2 有 4 种工作模式, Timer3 和 Timer4 有3种工作模式。

Timer2/3/4 的控制寄存器共用同一组地址(C8H-CDH),用户可通过 TXINX[2:0]将 TimerX 寄存器组 (TXCON / TXMOD / RCAPXL / RCAPXH / TLX / THX) 指向 Timer2/3/4, 从而实现一组寄存器配置三个独立 Timer 的功能。

注意: 只有在 TXINX[2:0]配置成功后 TimerX 寄存器组才会指向用户指定的 Timer2/3/4,此时操作 TimeX 寄存器组才是对相应 Timer 的有效操作。

11.1 T2/3/4 相关特殊功能寄存器

符号	地址	说明	7	6	5	4	3	2	1	0	Reset 值
TXINX	CEH	定时器 2/3/4 控制寄存器指针	-	-	-	-	-	٦	TXINX[2:0)]	xxxxx010b
TXCON	C8H	定时器 2/3/4 控制寄存器	TFX	EXFX	RCLKX	TCLKX	EXENX	TRX	C/TX	CP/RLX	00000000b
TXMOD	С9Н	定时器 2/3/4 工作模式寄存器	TXFD	1	EPWM N1	EPWM N0	INVN1	INVN0	TXOE	DCXEN	0x000000b
RCAPXL	CAH	定时器 2/3/4 重载低 8 位				RCAP	XL[7:0]				00000000b
RCAPXH	СВН	定时器 2/3/4 重载高 8 位				RCAP	XH[7:0]				0000000b
TLX	ССН	定时器 2/3/4 低 8 位				TLX	[7:0]				0000000b
THX	CDH	定时器 2/3/4 高 8 位		THX[7:0]				0000000b			
TMCON	8EH	定时器频率控制寄存器	-	-	-	T3OS	-	T2OS	T1FD	T0FD	xxx0x000b

TXINX(CEH)定时器 2/3/4 控制寄存器指针(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	ı	-	-	-		TXINX[2:0]	
读/写	-	-	-	-	-	读/写	读/写	读/写
上电初始值	Х	Х	Х	Х	Х	0	1	0

位编号	位符号	说明
2~0	TXINX[2:0]	定时器 2/3/4 控制寄存器指针 010: TimerX 寄存器组: TXCON / TXMOD / RCAPXL / RCAPXH / TLX / THX 指向 T2 011: TimerX 寄存器组指向 T3 100: TimerX 寄存器组指向 T4 其他: 保留
7~3	-	保留

TMCON(8EH)定时器频率控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	T3OS	-	T2OS	T1FD	T0FD
读/写	-	-	-	读/写	-	读/写	读/写	读/写
上电初始值	х	х	х	0	х	0	0	0

位编号	位符号	说明					
	T000	信号	GPIO-默认信号口 T3OS=0	GPIO-A 组映射 T3OS=1			
4	T3OS	T3	P1.1	P2.4			
		T3EX		P1.2	P2.5		

Page 44 of 97 V1.0 http://www.socmcu.com

位编号	位符号	说明					
		信号	GPIO-默认信号口 T2OS=0	GPIO-A 组映射 T2OS=1			
2	T2OS	T2	P1.5	P2.2			
		T2EX	P1.4	P2.3			
		T1 输入频率	选择控制				
1	T1FD	0: T1 频率源自于 f _{sys} /12					
		1: T1 频率源自于 fsys					
		T0 输入频率选择控制					
0	T0FD	0: T0 频率源自于 fsys/12					
		1: T0 频率源自于 fsys					

11.2 定时器 TIMER2

SC92F84HX 单片机内部的 Timer2 具有计数方式和定时方式两种工作模式。特殊功能寄存器 TXCON 中有一个控制位 C/TX 来选择 T2 是定时器还是计数器。它们本质上都是一个加法计数器,只是计数的来源不同。定时器的来源为系统时钟或者其分频时钟,但计数器的来源为外部管脚的输入脉冲。TRX 是 T2/T3/T4 在定时器/计数器模式计数的开关控制,只有在 TRX=1 的时候,T2 才会被打开计数。

计数器模式下,T2管脚上的每一个脉冲,T2的计数值分别增加1。

定时器模式下,可通过特殊功能寄存器 TXMOD.7(TXFD)来选择 T2 的计数来源是 $f_{sys}/12$ 或 f_{sys} 。

定时器/计数器 T2 有 4 种工作模式:

- ① 模式 0: 16 位捕获模式
- ② 模式 1: 16 位自动重载定时器模式
- ③ 模式 2: 波特率发生器模式
- ④ 模式 3: 可编程时钟输出模式

TXINX[2:0] = 010, TimerX 寄存器组指向 Timer2, 各寄存器的解释说明如下:

TXCON(C8H)定时器 2 控制寄存器(读/写)(TXINX[2:0] = 010)

位编号	7	6	5	4	3	2	1	0
符号	TFX	EXFX	RCLKX	TCLKX	EXENX	TRX	C/TX	CP/RLX
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	TFX	定时器 2 溢出标志位 0:无溢出(必须由软件清 0) 1:溢出(如果 RCLKX = 0 和 TCLKX = 0,由硬件设 1)
6	EXFX	T2EX 引脚外部事件输入(下降沿)被检测到的标志位 0: 无外部事件输入(必须由软件清 0) 1: 检测到外部输入(如果 EXENX = 1,由硬件设 1)
5	RCLKX	UART0 接收时钟控制位 0: 定时器 1 产生接收波特率 1: 定时器 2 产生接收波特率
4	TCLKX	UART0 发送时钟控制位 0: 定时器 1 产生发送波特率 1: 定时器 2 产生发送波特率
3	EXENX	T2EX 引脚上的外部事件输入(下降沿)用作重载/捕获触发器允许/禁止控制: 0: 忽略 T2EX 引脚上的事件 1: 当定时器 2 不做为 UART0 时钟时,检测到 T2EX 引脚上一个下降

Page 45 of 97 V1.0 http://www.socmcu.com

位编号	位符号	说明
		沿,产生一个捕获或重载
2	TRX	定时器 2 开始/停止控制位 0:停止定时器 2/停止 PWM2 计数器 1:开始定时器 2/开启 PWM2 计数器
1	с/тх	定时器 2 定时器/计数器方式选定位 0: 定时器方式, T2 引脚用作 I/O 端口 1: 计数器方式
0	CP/RLX	捕获/重载方式选定位 0: 16 位带重载功能的定时器/计数器 1: 16 位带捕获功能的定时器/计数器, TXEX 为定时器 2 外部捕获信号 输入口

TXMOD (C9H) 定时器 2 工作模式寄存器 (读/写) (TXINX[2:0] = 010)

位编号	7	6	5	4	3	2	1	0
符号	TXFD	-	EPWM21	EPWM20	INV21	INV20	TXOE	DCXEN
读/写	读/写	-	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	х	0	0	0	0	0	0

位编号	位符号	说明					
7	TXFD	T2 输入频率选择控制 0: T2 频率源自于 fsys/12 1: T2 频率源自于 fsys					
1	TXOE	定时器 2 输出允许位 0: 设置 T2 作为时钟输入或 I/O 端口 1: 设置 T2 作为时钟输出					
0	DCXEN	递减计数允许位 0: 禁止定时器 2 作为递增/递减计数器,定时器 2 仅作为递增计数器 1: 允许定时器 2 作为递增/递减计数器,T2EX 用来选择计数方向。					
6	-	保留					

IE(A8H)中断使能寄存器(读/写)

	The state of the s							
位编号	7	6	5	4	3	2	1	0
符号	EA	EADC	ET2	EUART	ET1	EINT1	ET0	EINT0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
5	ET2	Timer2 中断使能控制 0: 关闭 Timer2 中断 1: 允许 Timer2 中断

IP(B8H)中断优先级控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	IPADC	IPT2	IPUART	IPT1	IPINT1	IPT0	IPINT0
读/写	-	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	Х	0	0	0	0	0	0	0

位编号	位符号	说明
5	IPT2	Timer2 中断优先权 0: 设定 Timer2 的中断优先权是"低"

Page 46 of 97 V1.0

	位编号	位符号	说明
Ī			1: 设定 Timer2 的中断优先权是"高"

11.3 定时器 TIMER3

SC92F84HX 单片机内部的 Timer3 作为定时器本质上都是一个加法计数器,定时器的时钟来源为系统时钟或 者其分频时钟。TRX 是 T3 计数的开关控制,只有在 TRX=1 的时候,T3 才会被打开计数。

定时器模式下,可通过特殊功能寄存器 TXMOD.7(TXFD) 来选择 T3的计数来源是 fsys/12或 fsys。 TXINX[2:0] = 011, TimerX 寄存器组指向 Timer3, 各寄存器的解释说明如下:

TXCON(C8H)定时器 3 控制寄存器(读/写)(TXINX[2:0] = 011)

位编号	7	6	5	4	3	2	1	0
符号	TFX	EXFX	-	-	EXENX	TRX	C/TX	CP/RLX
读/写	读/写	读/写	-	-	读/写	读/写	读/写	读/写
上电初始值	0	0	Х	Х	0	0	0	0

位编号	位符号	说明
7	TFX	定时器 3 溢出标志位 0: 无溢出(必须由软件清 0) 1: 溢出(由硬件设 1)
6	EXFX	T3EX 引脚外部事件输入(下降沿)被检测到的标志位 0: 无外部事件输入(必须由软件清 0) 1: 检测到外部输入(如果 EXENX = 1, 由硬件设 1)
3	EXENX	T3EX 引脚上的外部事件输入(下降沿)用作重载/捕获触发器允许/禁止控制: 0: 忽略 T3EX 引脚上的事件 1: 检测到 T3EX 引脚上一个下降沿,产生一个捕获或重载
2	TRX	定时器 3 开始/停止控制位 0: 停止定时器 3/停止 PWM3 计数器 1: 开始定时器 3/开启 PWM3 计数器
1	с/тх	定时器 3 定时器/计数器方式选定位 0: 定时器方式, T3 引脚用作 I/O 端口 1: 计数器方式
0	CP/RLX	捕获/重载方式选定位 0: 16 位带重载功能的定时器/计数器 1: 16 位带捕获功能的定时器/计数器, TXEX 为定时器 3 外部捕获信号 输入口
5~4	-	保留

TXMOD(C9H)定时器 3 工作模式寄存器(读/写)(TXINX[2:0] = 011)

位编号	7	6	5	4	3	2	1	0
符号	TXFD	-	EPWM31	EPWM30	INV31	INV30	TXOE	DCXEN
读/写	读/写	-	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	Х	0	0	0	0	0	0

位编号	位符号	说明
7	TXFD	T3 输入频率选择控制 0: T3 频率源自于 fsys/12 1: T3 频率源自于 fsys
1	TXOE	定时器 3 输出允许位 0: 设置 T3 作为时钟输入或 I/O 端口

Page 47 of 97 V1.0

位编号	位符号	说明
		1: 设置 T3 作为时钟输出
0	DCXEN	递减计数允许位 0: 禁止定时器 3 作为递增/递减计数器,定时器 3 仅作为递增计数器 1: 允许定时器 3 作为递增/递减计数器, T3EX 用来选择计数方向。
6	-	保留

IE1(A9H)中断使能寄存器 1(读/写)

位编号	7	6	5	4	3	2	1	0
符号	ET4	ET3	-	ETK	-	EBTM	EPWM	ESSI
读/写	读写	读写	-	读写	-	读/写	读/写	读/写
上电初始值	0	0	х	0	х	0	0	0

位编号	位符号	说明
6	ET3	Timer3 中断使能控制 0: 关闭 Timer3 中断 1: 允许 Timer3 中断

IP1(B9H)中断优先级控制寄存器 1(读/写)

位编号	7	6	5	4	3	2	1	0
符号	IPT4	IPT3	-	IPTK	-	IPBTM	IPPWM	IPSSI
读/写	读/写	读/写	-	读/写	-	读/写	读/写	读/写
上电初始值	0	0	Х	0	Х	0	0	0

位编号	位符号	说明
6	IPT3	Timer3 中断优先权选择 0: Timer3 中断优先权为低 1: Timer3 中断优先权为高

11.4 定时器 TIMER4

SC92F84HX 单片机内部的 Timer4 作为定时器本质上都是一个加法计数器,定时器的时钟来源为系统时钟或者其分频时钟。TRX 是 T4 计数的开关控制,只有在 TRX=1 的时候,T4 才会被打开计数。

定时器模式下,可通过特殊功能寄存器 TXMOD.7(TXFD)来选择 T4 的计数来源是 fsys/12 或 fsys。

TXINX[2:0] = 100, TimerX 寄存器组指向 Timer4, 各寄存器的解释说明如下:

TXCON(C8H)定时器 4 控制寄存器(读/写)(TXINX[2:0] = 100)

位编号	7	6	5	4	3	2	1	0
符号	TFX	EXFX	-	-	EXENX	TRX	C/TX	CP/RLX
读/写	读/写	读/写	-	-	读/写	读/写	读/写	读/写
上电初始值	0	0	Х	Х	0	0	0	0

位编号	位符号	说明				
7	TFX	定时器 4 溢出标志位 0: 无溢出(必须由软件清 0) 1: 溢出(由硬件设 1)				
6	EXFX	T4EX 引脚外部事件输入(下降沿)被检测到的标志位 0: 无外部事件输入(必须由软件清 0) 1: 检测到外部输入(如果 EXENX = 1,由硬件设 1)				

Page 48 of 97 V1.0 http://www.socmcu.com

位编号	位符号	说明
3	EXENX	T4EX 引脚上的外部事件输入(下降沿)用作重载/捕获触发器允许/禁止控制: 0: 忽略 T4EX 引脚上的事件 1: 检测到 T4EX 引脚上一个下降沿,产生一个捕获或重载
2	TRX	定时器 4 开始/停止控制位 0:停止定时器 4/停止 PWM4 计数器 1:开始定时器 4/开启 PWM4 计数器
1	С/ТХ	定时器 4 定时器/计数器方式选定位 0: 定时器方式, T4 引脚用作 I/O 端口 1: 计数器方式
0	CP/RLX	捕获/重载方式选定位 0: 16 位带重载功能的定时器/计数器 1: 16 位带捕获功能的定时器/计数器, TXEX 为定时器 4 外部捕获信号 输入口
5~4	-	保留

TXMOD (C9H) 定时器 4 工作模式寄存器 (读/写) (TXINX[2:0] = 100)

位编号	7	6	5	4	3	2	1	0
符号	TXFD	-	EPWM41	EPWM40	INV41	INV40	TXOE	DCXEN
读/写	读/写	-	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	х	0	0	0	0	0	0

位编号	位符号	说明					
7	TXFD	T4 输入频率选择控制 0: T4 频率源自于 f _{sys} /12 1: T4 频率源自于 f _{sys}					
1	TXOE	定时器 4 输出允许位 0: 设置 T4 作为时钟输入或 I/O 端口 1: 设置 T4 作为时钟输出					
0	DCXEN	递减计数允许位 0:禁止定时器 4 作为递增/递减计数器,定时器 4 仅作为递增计数器 1:允许定时器 4 作为递增/递减计数器,T4EX 用来选择计数方向。					
6	-	保留					

IE1(A9H)中断使能寄存器 1(读/写)

位编号	7	6	5	4	3	2	1	0
符号	ET4	ET3	-	ETK	-	EBTM	EPWM	ESSI
读/写	读写	读写	-	读写	-	读/写	读/写	读/写
上电初始值	0	0	Х	0	Х	0	0	0

位编号	位符号	说明
7	ET4	Timer4 中断使能控制 0: 关闭 Timer4 中断 1: 允许 Timer4 中断

IP1(B9H)中断优先级控制寄存器 1(读/写)

(2011)	- () 内内内外上内内口								
位编号	7	6	5	4	3	2	1	0	
符号	IPT4	IPT3	-	IPTK	-	IPBTM	IPPWM	IPSSI	
读/写	读/写	读/写	-	读/写	-	读/写	读/写	读/写	
上电初始值	0	0	Х	0	Х	0	0	0	

Page 49 of 97 V1.0

位编号	位符号	说明
6	IPT4	Timer4 中断优先权选择 0: Timer4 中断优先权为低 1: Timer4 中断优先权为高

11.5 TIMER2/3/4 工作模式

定时器 Timer2/3/4 的工作模式如下:

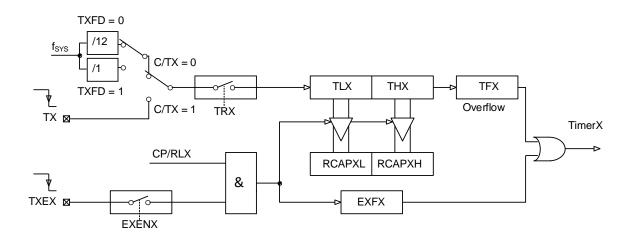
- ① 模式 0: 16 位捕获
- ② 模式 1: 16 位自动重载定时器
- ③ 模式 2: 波特率发生器,仅 Timer2 支持该模式
- 4) 模式 3: 可编程时钟输出
- (5) 模式 4: PWM 输出模式

以上工作模式与配置方式如下表:

С/ТХ	TXOE	DCXEN	TRX	CP/RLX	EXENX	工作模式		
Х	0	Х	1	1	1	模式 0	16 位捕获	
Х	0	0	1	0	0		16 位自动重载定时/计数器,普通自动重载	
Х	0	0	1	0	1	模式 1	16 位自动重载定时/计数器,带 TnEX 触发重载	
Х	0	1	1	0	Х		16 位自动重载定时/计数器,递增或递减重载	
Х	0	Х	1	Х	Х	模式 2	UARTO 波特率发生器,仅 Timer2 支持该模式	
0	1	Х	1	Х	Х	模式 3	可编程时钟输出	
Х	Х	Х	0	Х	1	Х	定时器停止,TnEX(n=2~4)通路仍旧允许设置捕获/ 重载产生中断	

11.5.1 TIMER2/3/4 工作模式说明

工作模式 0: 16 位捕获


配置 CP/RLX =1,将定时器 n(n=2~4)设置为 16 位捕获模式。

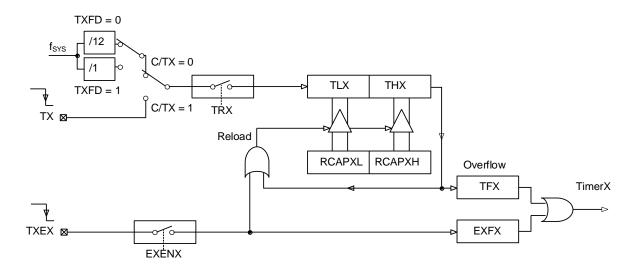
在捕获方式中, TXCON的 EXENX 位有两个选项:

如果 EXENX = 0, 定时器 n 作为 16 位定时器或计数器, 如果 ETn 被允许的话, 定时器 n 能设置 TFX 溢出产 生一个中断。

如果 EXENX = 1, 定时器 n 执行相同操作, 但是在外部输入 TnEX 上的下降沿也能引起在 THX 和 TLX 中的 当前值分别被捕获到 RCAPXH 和 RCAPXL 中,此外,在 TnEX 上的下降沿也能引起在 TXCON 中的 EXFX 被设 置。如果 ETn 被允许, EXFX 位也像 TFX 一样也产生一个中断。

Page 50 of 97 V1.0

模式 0: 16 位捕获


工作模式 1: 16 位自动重载定时器

在 16 位自动重载方式下,定時器 n(n=2~4)可以被选为递增计数或递减计数。这个功能通过 TnMOD 中的 DCEN 位(递减计数允许)选择。系统复位后,DCEN 位复位值为 0,定时器 n 默认递增计数。当 DCEN 置 1 时,定时器 n 递增计数或递减计数取决于 TnEX 引脚上的电平。

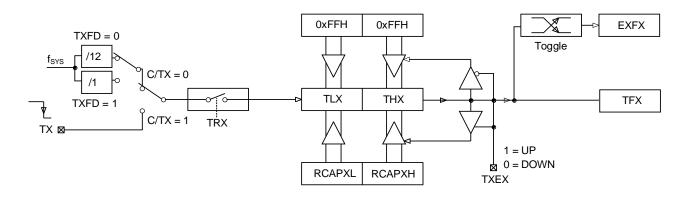
当 DCEN = 0,通过在 TXCON 中的 EXENX 位选择两个选项。

如果 EXENX = 0, 定时器 n 递增到 0xFFFFH, 在溢出后置起 TFX 位, 同时定时器自动将用户软件写好的寄存器 RCAPXH 和 RCAPXL 的 16 位值装入 THX 和 TLX 寄存器。

如果 EXENX = 1,溢出或在外部输入 TnEX 上的下降沿都能触发一个 16 位重载。TnEX 上有下降沿产生时,EXFX 位置起。如果 ETn 被使能,TFX 和 EXFX 位都能产生一个中断。

模式 1: 16 位自动重载 DCEN = 0

设置 DCEN 位允许定时器 n 递增计数或递减计数。当 DCEN = 1 时,TnEX 引脚控制计数的方向,而 EXENX 控制无效。


TnEX 置 1 可使定时器 n 递增计数。定时器向 0xFFFFH 溢出,然后设置 TFX 位。溢出也能分别引起 RCAPXH 和 RCAPXL 上的 16 位值重载入定时器寄存器。

TnEX 置 0 可使定时器 n 递减计数。当 THX 和 TLX 的值等于 RCAPXH 和 RCAPXL 的值时,定时器溢出。置起 TFX 位,同时 0xFFFFH 重载入定时器寄存器。

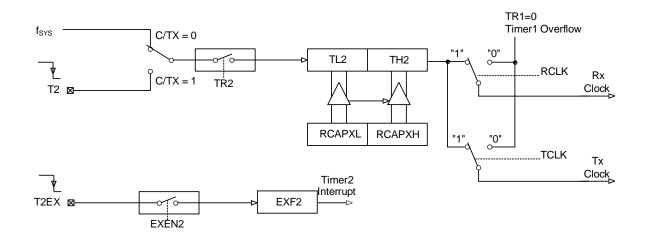
无论定时器 n 溢出与否, EXFX 位都被用作结果的第 17 位。在此工作方式下, EXFX 不作为中断标志。

Page 51 of 97 V1.0 http://www.socmcu.com

模式 1: 16 位自动重载 DCEN = 1

工作模式 2: 波特率发生器,仅 Timer2 支持

通设置 TXCON 寄存器中的 TCLK 和/或 RCLK 选择定时器 2 作为波特率发生器。接收器和发送器的波特率可以不同。如果定时器 2 作为接收器或发送器,则定时器 1 相应的作为另一种的波特率发生器


设置 TXCON 寄存器中的 TCLK 和/或 RCLK 使定时器 2 进入波特率发生器方式,该方式与自动重载方式相似定时器 2 的溢出会使 RCAPXH 和 RCAPXL 寄存器中的值重载入定时器 2 计数,但不会产生中断

如果 EXENX 被置 1,在 T2EX 脚上的下降沿会置起 EXFX,但不会引起重载。因此当定时器 2 作为波特率发送器时,T2EX 可作为一个额外的外部中断

在 UART0 方式 1 和 3 中的波特率由定时器 2 的溢出率根据下列方程式决定:

$$BaudRate = \frac{f_{SYS}}{[RCAPXH,RCAPXL]}; \quad (注意: [RCAPXH,RCAPXL] 必须大于 0x0010)$$

定时器 2 作为波特率发生器的原理图如下:

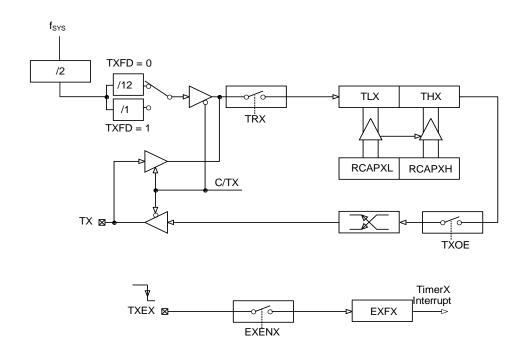
模式 2: 波特率发生器

工作模式 3: 可编程时钟输出

在这种方式中,定时器 n (n=2~4) 可以编程为输出 50%的占空比时钟周期: 当 $C/\overline{Tn} = 0$; TnOE = 1,使能定时器 n 作为时钟发生器

在这种方式中, Tn 输出占空比为 50%的时钟

Clock Out Frequency =
$$\frac{\text{fn}}{(65536-[\text{RCAPXH,RCAPXL}])\times 4}$$
;


V1 0

其中, fn 为定时器 n 时钟频率:

$$fn = \frac{f_{SYS}}{12}$$
; $TXFD = 0$

$$fn = f_{SYS}$$
; TXFD = 1

定时器 n 溢出不产生中断, Tn 端口作时钟输出。

模式 3: 可编程时钟输出

注意:

- 1. TFX 和 EXFX 都能引起定时器 n (n=2~4) 的中断请求,两者有相同的向量地址;
- 2. 当事件发生时或其它任何时间都能由软件设置 TFX 和 EXFX 为 1, 只有软件以及硬件复位才能使之清 0;
- 3. 当 EA = 1 且 ETn = 1 时,设置 TFX 或 EXFX 为 1 能引起定时器 n 中断;
- 4. 当定时器 2 作为波特率发生器时,写入 THX/TLX 或 RCAPXH/RCAPXL 会影响波特率的准确性,引起通信出错。

Page 53 of 97

12 常规脉冲宽度调制计数器 PWM2/3/4

SC92F84HX 最多提供 6 路 PWM, 分为三组: PWM2(T2PWM0/T2PWM1)、PWM3(T3PWM0/T3PWM 1) 、PWM4(T4PWM0/T4PWM1)。

注意: 这三组 PWM 的周期寄存器分别与 Timer2, Timer3, Timer4 的 TLX 和 THX 共用,因此一旦用户使 用了 PWM2、PWM3、PWM4 资源,就不能再更改 Timer2,Timer3,Timer4 的定时/计数值,否则会导致 PWM 周期输出异常!

12.1 PWM2/3/4 相关寄存器

PWM2/3/4 相关寄存器如下:

TXINX(CEH) 定时器 2/3/4 控制寄存器指针(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	-		TXINX[2:0]	
读/写	-	-	-	-	-	读/写	读/写	读/写
上电初始值	х	х	Х	х	х	0	1	0

位编号	位符号	说明
2~0	TXINX[2:0]	定时器 2/3/4 控制寄存器指针 010: TimerX 寄存器组: TXCON / TXMOD / RCAPXL / RCAPXH / TLX / THX 指向 PWM2 011: TimerX 寄存器组指向 PWM3 100: TimerX 寄存器组指向 PWM4 其他: 保留
7~3	-	保留

TXCON(C8H)定时器 n 控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	TFX	EXFX	RCLKX	TCLKX	EXENX	TRX	C/TX	CP/RLX
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
2	TRX	定时器 n 开始/停止控制位 0:停止定时器 n/停止 PWMn 计数器 1:开始定时器 n/开启 PWMn 计数器

当 EPWMn0 或 EPWMn1 置 1 时 Timer 即可开启 PWM 模式 (n=2, 3, 4), 此时 Tn 和 TnEX 无效, PWMn0 和 PWMn1 可输出 PWM 波形。

TXMOD (C9H) 定时器 n (n=2, 3, 4) 工作模式寄存器 (读/写)

位编号	7	6	5	4	3	2	1	0
符号	TXFD	-	EPWMn1	EPWMn0	INVn1	INVn0	TXOE	DCXEN
读/写	读/写	-	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	Х	0	0	0	0	0	0

位编号	位符号	说明
7	TXFD	Tn (n=2, 3, 4) 输入频率选择控制

Page 54 of 97 V1.0

位编号	位符号	说明
		0: Tn 频率源自于 fsys/12
		1: Tn 频率源自于 fsys
	ENPWMn1	PWMn1 波形输出选择
5		0: PWMn1 输出被关闭
	n=2, 3, 4	1: PWMn1 所在的 I/O 作为 PWM 波形输出口
	ENPWMn0	PWMn0 波形输出选择
4		0: PWMn0 输出被关闭
	n=2, 3, 4	1: PWMn0 所在的 I/O 作为 PWM 波形输出口
	INVn1	PWMn1 波形输出反向控制
3	n=2, 3, 4	1: PWMn1 波形输出反向
	n=2, 3, 4	0: PWMn1 波形输出不反向
	INVn0	PWMn0 波形输出反向控制
2		1: PWMn0 波形输出反向
	n=2,3,4	0: PWMn0 波形输出不反向

THX 和 TLX 计数器从 0 开始向上计数,当计数值与占空比设置项 PDTxy [15:0]的值匹配时 PWM 输出波形切 换高低电平,接着 THX 和 TLX 计数器继续向上计数到自动重载值 PWMPDX,然后重新从 0 开始计数并生成计数 上溢事件,一个 PWM 周期结束。如果定时器中断已使能,此时会产生定时中断。

Timer 输出的 PWM 周期 T_{PWM} 计算公式如下:

$$Tpwm = \frac{PWMPDX[15:0] + 1}{fn}$$

其中, fn(n=2,3,4)为定时器 n 时钟频率:

$$fn = \frac{f_{SYS}}{12};$$
 TXFD = 0

$$fn = f_{SYS}; TXFD = 1$$

占空比 duty 计算公式:

$$duty = \frac{PDTxy [15:0]}{PWMPDX[15:0] + 1}$$

PWM 周期通过以下寄存器设定:

RCAPXH (CBH)

PWMn 周期寄存器高 8 位(读/写)

注意: PWM2/3/4 的周期寄存器与 Timer2, Timer3, Timer4 复用, 因此, 用户一旦使用了 PWM2、PWM3、 PWM4 资源,就不能再更改 Timer2, Timer3, Timer4 的定时/计数值,否则会导致 PWM 周期输出异常!

2 4 4 4 4 4 4 4 4		•				7 4774 184 77 1 -11-				
位编号	7	6	5	4	3	2	1	0		
符号		PWMPDHX[7:0]								
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写		
上电初始值	0	0	0	0	0	0	0	0		

RCAPXL (CAH)

PWMn 周期寄存器低 8 位(读/写)(TXINX[2:0] = 010)

注意: PWM2/3/4 的周期寄存器与 Timer2, Timer3, Timer4 复用, 因此, 用户一旦使用了 PWM2、PWM3、 PWM4 资源,就不能再更改 Timer2,Timer3,Timer4 的定时/计数值,否则会导致 PWM 周期输出异常!

位编号	7	6	5	4	3	2	1	0
符号				PWMP	DLX[7:0]			

Page 55 of 97 V1.0

位编号	7	6	5	4	3	2	1	0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	PWMPDX[15:0]	PWMn 周期设置 此数值代表 PWMn 的输出波形的(周期–1); 也就是说 PWMn 输出的 周期值为(PWMPDX[15:0] + 1)*PWM 时钟;

PWM 的 duty 通过以下寄存器设定:

PWM2~4 占空比调节寄存器(读/写)

地址	7	6	5	4	3	2	1	0	上电初始值	
0334H				PDT2	0[15:8]				0000000b	
0335H		PDT20[7:0]								
0336H		PDT21[15:8]								
0337H		PDT21[7:0]								
0338H		PDT30[15:8]								
0339H		PDT30[7:0]								
033AH				PDT3	1[15:8]				0000000b	
203BH				PDT3	31[7:0]				0000000b	
033CH				PDT4	0[15:8]				0000000b	
033DH		•		PDT4	10[7:0]	•	•	•	0000000b	
033EH		PDT41[15:8]								
033FH				PDT4	11[7:0]	•			0000000b	

位编号	位符号	说明
7~0	PDTxy[15:0] (x=2~4, y=0~1)	PWMxy 波形占空比长度设置 PWMxy 的波形的高电平宽度为: (PDTxy[15:0] + 1)个 PWM 时钟

12.2 PWM2/3/4 占空比变化特性

当 PWM2/3/4 输出波形时,若需改变占空比,可通过改变高电平设置寄存器 PDTxy(x=2~4, y=0~1)的值 实现。但需要注意:更改 PDTxy 的值,占空比不会立即改变,而是等待本周期结束,在下个周期改变。

12.3 PWM2/3/4 周期变化特性

当 PWM2/3/4 输出波形时,若需改变周期,可通过改变周期设置寄存器组 TLX 和 THX 的值实现。更改周期 寄存器的值,PWM输出周期变化情况如下:

定义当前周期计数值为 Tn,写入周期寄存器时,定时器计到的值为 Tm,待更新的周期计数值为 Tx,则: Tm≤Tx: 周期按照Tx实时改变;

Tm > Tx: 此时周期变化会分为两个阶段。第一个阶段,写入周期寄存器之后,周期计数器会从当前计数值 累加至溢出清零。第二个阶段,周期按照 Tx 改变。

Page 56 of 97 V1.0 http://www.socmcu.com

13 乘除法器

SC92F84HX 提供了 1 个 16 位的乘除法器,由扩展累加器 EXA0~EXA3、扩展 B 寄存器 EXB 和运算控制寄 存器 OPERCON 组成。可取代软件进行 16 位×16 位乘法运算和 32 位/16 位除法运算。

符号	地址	说明	7	6	5	4	3	2	1	0	Reset 值	
EXA0	E9H	扩展累加器 0		EXA [7:0]								
EXA1	EAH	扩展累加器 1		EXA [15:8]								
EXA2	EBH	扩展累加器 2		EXA [23:16]								
EXA3	ECH	扩展累加器3				EXA [31:24]				0000000b	
EXBL	EDH	扩展B寄存器L		EXB [7:0]							0000000b	
EXBH	EEH	扩展 B 寄存器 H				EXB	[15:8]				0000000b	

OPERCON (EFH) 运算控制寄存器 (读/写)

<u> </u>												
位编号	7	6	5	4	3	2	1	0				
符号	OPERS	MD	-	-	-	-	-	CHKSU MS				
读/写	读/写	读/写	-	-	-	•	-	读/写				
上电初始值	0	0	Х	Х	Х	Х	Х	0				

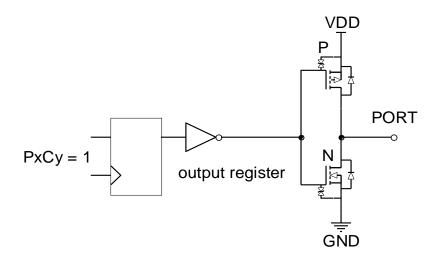
位编号	位符号			说明		
7	OPERS	乘除法器运算开始的 对此 bit 写"1",算的触发信号,当	开始做一次乘	終法计算,即	『该位只是乘』	
		乘除法选择 0:乘法运算,被乘	美数和乘数的	写入、乘积的	读取如下:	
		字节 运算数	字节3	字节 2	字节 1	字节 0
		被乘数 16 bit	-	-	EXA1	EXA0
		乘数 16bit	-	-	EXBH	EXBL
		乘积 32bit	EXA3	EXA2	EXA1	EXA0
6	MD	1 : 除法运算,被除	拿数和除数的 。	写入、商和余	数的读取如下	:
		字节 运算数	字节3	字节 2	字节1	字节 0
		被除数 32bit	EXA3	EXA2	EXA1	EXA0
		除数 16bit	-	-	EXBH	EXBL
		商 32bit	EXA3	EXA2	EXA1	EXA0
		余数 16bit	-	-	EXBH	EXBL

注:

- 1. 在执行运算操作过程中,禁止对 EXA 和 EXB 数据寄存器执行读或写动作。
- 2. 乘除法器运算转换所需时间为 16/fsys。

Page 57 of 97 V1.0

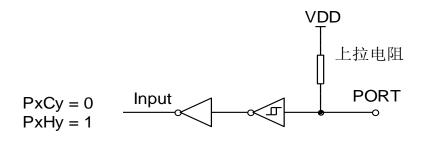
14 GP I/O


SC92F84HX 提供了最多 26 个可控制的双向 GPIO 端口,输入输出控制寄存器用来控制各端口的输入输出状态,当端口作为输入时,每个 I/O 端口带有由 PxPHy 控制的内部上拉电阻,此 26 个 IO 同其他功能复用。I/O 端口在输入或输出状态下,从端口数据寄存器里读到的都是端口的实际状态值。

注意:未使用及封装未引出的 IO 口均要设置为强推挽输出模式。

14.1 GPIO 结构图

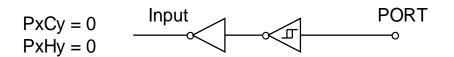
强推挽输出模式


强推挽输出模式下,能够提供持续的大电流驱动:大于 20mA 的输出高,大于 100mA 的输出低。强推挽输出模式的端口结构示意图如下:

强推挽输出模式

带上拉的输入模式

带上拉的输入模式下,输入口上恒定接一个上拉电阻,仅当输入口上电平被拉低时,才会检测到低电平信号。带上拉的输入模式的端口结构示意图如下:


带上拉的输入模式

高阻输入模式(Input only)

高阻输入模式的端口结构示意图如下所示:

高阻输入模式

14.2 I/O 端口相关寄存器

POCON(9AH)PO口输入/输出控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P0C7	P0C6	P0C5	P0C4	P0C3	P0C2	P0C1	P0C0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

POPH (9BH) PO 口上拉电阻控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P0H7	P0H6	P0H5	P0H4	P0H3	P0H2	P0H1	P0H0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P1CON (91H) P1 口输入/输出控制寄存器 (读/写)

位编号	7	6	5	4	3	2	1	0
符号	P1C7	P1C6	P1C5	P1C4	P1C3	P1C2	P1C1	P1C0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P1PH (92H) P1 口上拉电阻控制寄存器 (读/写)

位编号	7	6	5	4	3	2	1	0
符号	P1H7	P1H6	P1H5	P1H4	P1H3	P1H2	P1H1	P1H0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P2CON(A1H) P2 口输入/输出控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P2C7	P2C6	P2C5	P2C4	P2C3	P2C2	P2C1	P2C0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P2PH(A2H)P2 口上拉电阻控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P2H7	P2H6	P2H5	P2H4	P2H3	P2H2	P2H1	P2H0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

Page 59 of 97 V1.0

SC92F84H3/84H9/84H2

高速 1T 8051 内核 20 路高灵敏触控 Flash MCU

P5CON(D9H)P5口输入/输出控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	-	-	P5C1	P5C0
读/写	-	-	-	-	-	-	读/写	读/写
上电初始值	Х	Х	Х	Х	Х	Х	0	0

P5PH(DAH)P5口上拉电阻控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	-	-	P5H1	P5H0
读/写	-	-	-	-	-	-	读/写	读/写
上电初始值	Х	Х	Х	Х	Х	Х	0	0

位编号	位符号	说明
7~0	PxCy (x=0~2, 5, y=0~7)	Px 口输入输出控制: 0: Pxy 为输入模式(上电初始值) 1: Pxy 为强推挽输出模式
7~0	PxHy (x=0~2, 5, y=0~7)	Px 口上拉电阻设置,仅在 PxCy=0 时有效: 0: Pxy 为高阻输入模式(上电初始值),上拉电阻关闭; 1: Pxy 上拉电阻打开

P0 (80H) P0 口数据寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P1 (90H) P1 口数据寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P2(A0H) P2口数据寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P5 (D8H) P5 口数据寄存器 (读/写)

位编号	7	6	5	4	3	2	1	0
符号	-		-	-	-	-	P5.1	P5.0
读/写	-	-	-	-	-	-	读/写	读/写
上电初始值	Х	Х	Х	Х	Х	Х	0	0

IOHCON (97H) IOH 设置寄存器 (读/写)

位编号	7	6	5	4	3	2	1	0
符号	P2H	[1:0]	P2L[1:0]		P0H[1:0]		P0L[1:0]	
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

Page 60 of 97 V1.0

位编号	位符号	说明
		P2 高四位 IOH 设置
		00: 设置 P2 高四位 IOH 等级 0 (最大);
7~6	P2H[1:0]	01:设置 P2 高四位 IOH 等级 1;
		10: 设置 P2 高四位 IOH 等级 2;
		11: 设置 P2 高四位 IOH 等级 3 (最小);
		P2 低四位 IOH 设置
		00:设置 P2 低四位 IOH 等级 0 (最大);
5~4	P2L[1:0]	01:设置 P2 低四位 IOH 等级 1;
		10:设置 P2 低四位 IOH 等级 2;
		11: 设置 P2 低四位 IOH 等级 3 (最小);
		PO 高四位 IOH 设置
		00: 设置 P0 高四位 IOH 等级 0 (最大);
3~2	P0H[1:0]	01: 设置 P0 高四位 IOH 等级 1;
		10: 设置 P0 高四位 IOH 等级 2;
		11: 设置 P0 高四位 IOH 等级 3 (最小);
		PO 低四位 IOH 设置
		00: 设置 P0 低四位 IOH 等级 0 (最大);
1~0	P0L[1:0]	01: 设置 P0 低四位 IOH 等级 1;
		10: 设置 P0 低四位 IOH 等级 2;
		11: 设置 P0 低四位 IOH 等级 3 (最小);

Page 61 of 97

15 UARTO

SC92F84HX支持一个全双工的串行口,可方便用于同其它器件或者设备的连接,例如Wifi模块电路或其它 UART通信接口的驱动芯片等。UART0的功能及特性如下:

- 1. 三种通讯模式可选:模式 0、模式 1 和模式 3;
- 2. 可选择定时器 1 或定时器 2 作为波特率发生器;
- 发送和接收完成可产生中断 RI/TI,该中断标志需要软件清除。

SCON (98H) 串口控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~6	SM0~1	串行通信模式控制位 00:模式 0,8 位半双工同步通信模式,在 RX 引脚上收发串行数据。 TX 引脚用作发送移位时钟。每帧收发 8 位,低位先接收或发送; 01:模式 1,10 位全双工异步通信,由 1 个起始位,8 个数据位和 1 个停止位组成,通信波特率可变; 10:保留; 11:模式 3,11 位全双工异步通信,由 1 个起始位,8 个数据位,一个可编程的第 9 位和 1 个停止位组成,通信波特率可变。
5	SM2	串行通信模式控制位 2, 此控制位只对模式 2, 3 有效 0: 每收到一个完整的数据帧就置位 RI产生中断请求; 1: 收到一个完整的数据帧时,只有当 RB8=1 时才会置位 RI产生中断请求。
4	REN	接收允许控制位 0: 不允许接收数据; 1: 允许接收数据。
3	TB8	只对模式 2、3 有效, 为发送数据的第 9 位
2	RB8	只对模式 2、3 有效,为接收数据的第9位
1	TI	发送中断标志位
0	RI	接收中断标志位

SBUF (99H) 串口数据缓存寄存器 (读/写)

位编号	7	6	5	4	3	2	1	0		
符号		SBUF[7:0]								
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写		
上电初始值	0	0	0	0	0	0	0	0		

位编号	位符号	说明
7~0	SBUF[7:0]	串口数据缓存寄存器 SBUF 包含两个寄存器:一个发送移位寄存器和一个接收锁存器,写入 SBUF 的数据将送至发送移位寄存器,并启动发送流程,读 SBUF 将返 回接收锁存器中的内容。

PCON (87H) 电源管理控制寄存器 (只写、*不可读 *)

位编号	7	6	5	4	3	2	1	0
符号	SMOD			-	RST	ı	STOP	IDL

Page 62 of 97 V1.0

SC92F84H3/84H9/84H2

高速 1T 8051 内核 20 路高灵敏触控 Flash MCU

位编号	7	6	5	4	3	2	1	0
读/写	只写	-	-	-	只写	-	只写	只写
上电初始值	0	х	х	х	n	х	0	0

位编号	位符号	说明
7	SMOD	 当 SM0~1 = 01 (UART0 模式 1) 或 SM0~1 = 11 (UART0 模式 3), 波特率倍率设置位: □ 0: 串行端口在系统时钟的 1分频下运行 □ 1: 串行端口在系统时钟的 16分频下运行 □ 5 SM0~1 = 00 (UART0 模式 0) 波特率倍率设置位: □ 0: 串行端口在系统时钟的 12分频下运行 □ 1: 串行端口在系统时钟的 4分频下运行

OTCON (8FH) 输出控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	SSMC	D[1:0]	UART0	UART0OS[1:0]		ı	SSIOS	-
读/写	读/写	读/写	读/写	读/写 读/写		-	读/写	-
上电初始值	0	0	0	0	Х	Х	0	Х

位编号	位符号					说明				
7~6	SSMOD[1:0]	00: SSI 01: SSI 10: SSI	SSI 通信模式控制位 00: SSI 关闭 01: SSI 设置为 SPI 通信模式; 10: SSI 设置为 TWI 通信模式; 11: SSI 设置为 UART 通信模式;							
5~4	5~4 UART0OS[1: 0]		信号 RX0		信号口 [1:0]=00	GPIO-A 组映射 UART0OS[1:0]=01 P5.1		GPIO-B 组映射 UARTOOS[1:0]=10 P1.5		
		信号	TX0 P1.1 信号		P5.0 GPIO-默认信号口 SSIOS=0		P1.4 GPIO-A 组映射 SSIOS=1			
1	SSIOS	RX1	MOSI	SDA	P1.0		P1.4			
		-	MISO	-	P1.1		P2.7			
		TX1	SCK	SCL	P1.3		P1.5			

15.1 串口通信的波特率

方式 0 中,波特率可编程为系统时钟的 1/12 或 1/4,由 SMOD (PCON.7) 位决定。当 SMOD 为 0 时,串行端口在系统时钟的 1/12 下运行。当 SMOD 为 1 时,串行端口在系统时钟的 1/4 下运行。

在方式 1 和方式 3 中,串行端口时钟源可编程为系统时钟的 1 分频或 16 分频,由 SMOD (PCON.7) 位决定。当 SMOD 为 0 时,串行端口在系统时钟的 1 分频下运行。当 SMOD 为 1 时,串行端口在系统时钟的 16 分频下运行。串行端口时钟源确定后,再由定时器 1 或定时器 2 设置波特率的溢出率:

● 当TCLK (TXCON.4) 和RCLK (TXCON.5) 位为均为0,则定时器1为波特率发生器方式,UART0的波特率溢出率由[TH1,TL1]设定。公式如下,注意:当定时器1作为波特率发生器,定时器1必须停止计数,即TR1=0:

SMOD = 0: BaudRate =
$$\frac{f_{SYS}}{[TH1,TL1]}$$
; (注意: [TH1,TL1] 必须大于 0x0010)

SMOD = 1: BaudRate =
$$\frac{1}{16} * \frac{f_{SYS}}{[TH1,TL1]}$$
;

Page 63 of 97 V1.0 http://www.socmcu.com

SC92F84H3/84H9/84H2

高速 1T 8051 内核 20 路高灵敏触控 Flash MCU

● 当 TCLK(TXCON.4)或 RCLK(TXCON.5)其中任何一位为 1,则定时器 2 为波特率发生器方式,UART0 的波特率溢出率由[RCAP2H、RCAP2L]设定,公式如下:

SMOD = 0: BaudRate =
$$\frac{f_{SYS}}{[RCAP2H,RCAP2L]}$$
; (注意: [RCAP2H,RCAP2L]必须大于 0x0010)

SMOD = 1: BaudRate =
$$\frac{1}{16} * \frac{f_{SYS}}{[RCAP2H,RCAP2L]}$$
;

Page 64 of 97

V1.0 http://www.socmcu.com

16 SPI/TWI/UART 三选一串行接口 SSI

SC92F84HX 内部集成了三选一串行接口电路(简称 SSI),可方便 MCU 与不同接口的器件或者设备的连接。用户可通过配置寄存器 OTCON 的 SSMOD[1:0] 位将 SSI 接口配置为 SPI、TWI 和 UART 中任意一种通信模式。 其特点如下:

- 1. SPI 模式可配置为主模式或从属模式中的一种
- 2. TWI 模式通信时只能做从机
- 3. UART 模式可工作在模式 1(10 位全双工异步通信)和模式 3(11 位全双工异步通信) 具体配置方式如下:

OTCON(8FH)输出控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	SSMC	D[1:0]	UART0	OS[1:0]	-	-	SSIOS	-
读/写	读/写	读/写	读/写	读/写	-	-	读/写	-
上电初始值	0	0	0	0	х	х	0	х

位编号	位符号	说明						
7~6	SSMOD[1:0]	SSI 通信模式控制位 00: SSI 关闭 01: SSI 设置为 SPI 通信模式; 10: SSI 设置为 TWI 通信模式; 11: SSI 设置为 UART 通信模式;						
5~4	UART0OS[1:0]	信号		-默认信号口 0OS[1:0]=00			GPIO-B 组映射 UART0OS[1:0]=10	
5~4	UAK 1003[1.0]	RX0	P1.2		P5.1		P1.5	
		TX0 P1.1		P5.0		P1.4		
			信号		GPIO-默认信号口 SSIOS=0	I	GPIO-A 组映射 SSIOS=1	
1	SSIOS	RX1	MOSI	SDA	P1.0	P1.4	P1.4	
		-	MISO	-	P1.1	P2.7	P2.7	
		TX1	SCK	SCL	P1.3	P1.5	5	

16.1 SPI

SSMOD[1:0] = 01, 三选一串行接口 SSI 配置为 SPI 接口。串行外部设备接口(简称 SPI)是一种高速串行通信接口,允许 MCU 与外围设备(包括其它 MCU)进行全双工,同步串行通信。

16.1.1 SPI 操作相关寄存器

SSCON0 (9DH) SPI 控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	SPEN	-	MSTR	CPOL	CPHA	SPR2	SPR1	SPR0
读/写	读/写	-	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	Х	0	0	0	0	0	0

位编号	位符号	说明
7	SPEN	SPI 使能控制 0: 关闭 SPI 1: 打开 SPI
5	MSTR	SPI 主从选择

V1.0

位编号	位符号	说明
		0: SPI 为从设备
		1: SPI 为主设备
		时钟极性控制位
4	CPOL	0: SCK 在空闲状态下为低电平
		1: SCK 在空闲状态下为高电平
		时钟相位控制位
3	СРНА	0: SCK 周期的第一沿采集数据
		1: SCK 周期的第二沿采集数据
		SPI 时钟速率选择位
		000: f _{SYS} /4
		001: f _{SYS} /8
		010: f _{SYS} /16
2~0	SPR[2:0]	011: f _{SYS} /32
		100: fsys /64
		101: f _{SYS} /128
		110: f _{SYS} /256
		111: fsys /512
6	-	保留

SSCON1 (9EH) SPI 状态寄存器 (读/写)

位编号	7	6	5	4	3	2	1	0
符号	SPIF	WCOL	-	-	TXE	DORD	-	TBIE
读/写	读/写	读/写	-	-	读/写	读/写	-	读/写
上电初始值	0	0	Х	Х	0	0	Х	0

位编号	位符号	说明
7	SPIF	SPI 数据传送标志位 0: 由软件清 0
7	SFIF	1:表明已完成数据传输,由硬件置 1
		写入冲突标志位
6	WCOL	0: 由软件清 0,表明已处理写入冲突
		1: 由硬件置 1, 表明检测到一个冲突
		发送缓存器空标志
3	TXE	0: 发送缓存器不空
		1: 发送缓存器空,必须由软件清零
		传送方向选择位
2	DORD	0: MSB 优先发送
		1: LSB 优先发送
		发送缓存器为空时的中断使能位:
0	TBIE	0: TXE=1 时,不允许产生中断
		1: TXE=1 时,将产生 SPI 中断
5~4, 1	-	保留

SSDAT (9FH) SPI 数据寄存器 (读/写)

OOD/(I (OI II)	, O		,					
位编号	7	6	5	4	3	2	1	0
符号				SPD	[7:0]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

Page 66 of 97 V1.0 http://www.socmcu.com

位编号	位符号	说明
		SPI 数据缓存寄存器
7~0	SPD[7:0]	写入 SSDAT 的数据被放置到发送移位寄存器中。
		读取 SSDAT 时将获得接收移位寄存器的数据。

16.1.2 信号描述

主输出从输入(MOSI):

该路信号连接主设备和一个从设备。数据通过 MOSI 从主设备串行传送到从设备,主设备输出,从设备输入。

主输入从输出(MISO):

该路信号连接从设备和主设备。数据通过 MISO 从从设备串行传送到主设备,从设备输出,主设备输入。当 SPI 配置为从设备并未被选中,从设备的 MISO 引脚处于高阻状态。

SPI 串行时钟(SCK):

SCK 信号用作控制 MOSI 和 MISO 线上输入输出数据的同步移动。每 8 时钟周期线上传送一个字节。如果从设备未被选中,SCK 信号被此从设备忽略。

16.1.3 工作模式

SPI 可配置为主模式或从属模式中的一种。SPI 模块的配置和初始化通过设置 SSCON0 寄存器(SPI 控制寄存器)和 SSCON1(SPI 状态寄存器)来完成。配置完成后,通过设置 SSCON0,SSCON1,SSDAT(SPI 数据寄存器)来完成数据传送。

在 SPI 通讯期间,数据同步地被串行的移进移出。串行时钟线(SCK)使两条串行数据线(MOSI 和 MISO)上数据的移动和采样保持同步。如果从设备没有被选中,则不能参与 SPI 总线上的活动。

当 SPI 主设备通过 MOSI 线传送数据到从设备时,从设备通过 MISO 线发送数据到主设备作为响应,这就实现了在同一时钟下数据发送和接收的同步全双工传输。发送移位寄存器和接收移位寄存器使用相同的特殊功能器地址,对 SPI 数据寄存器 SSDAT 进行写操作将写入发送移位寄存器,对 SSDAT 寄存器进行读操作将获得接收移位寄存器的数据。

有些设备的 SPI 接口会引出 SS 脚(从设备选择引脚,低有效),与 SC92F84HX 的 SPI 通信时,SPI 总线上 其它设备的 SS 脚的连接方式需根据不同的通信模式进行连接。下表列出了 SC92F84HX 的 SPI 不同通信模式下,SPI 总线上其它设备 SS 脚的连接方式:

SC92F84HX SPI	SPI 总线上其它设备	模式	从机的 SS (从设备选择引脚)
		一主一从	拉低
主模式	从模式	一主多从	SC92F84HX 引出多根 I/O,分别接至 从机的 SS 脚。在数据传送之前,从设 备的 SS 引脚必须被置低
从模式	主模式	一主一从	拉高

主模式

● 模式启动:

SPI 主设备控制 SPI 总线上所有数据传送的启动。当 SSCON0 寄存器中的 MSTR 位置 1 时,SPI 在主模式下运行,只有一个主设备可以启动传送。

● 发送:

在 SPI 主模式下,写一个字节数据到 SPI 数据寄存器 SSDAT,数据将会写入发送移位缓冲器。如果发送移位寄存器已经存在一个数据,那么主 SPI 产生一个 WCOL 信号以表明写入太快。但是在发送移位寄存器中的数据不会受到影响,发送也不会中断。另外如果发送移位寄存器不为空,那么主设备立即按照 SCK 上的 SPI 时钟频率串行地移出发送移位寄存器中的数据到 MOSI 线上。当传送完毕,SSCON1 寄存器中 SPIF 位被置 1。如果 SPI 中断被允许,当 SPIF 位置 1 时,也会产生一个中断。

● 接收:

Page 67 of 97 V1.0 http://www.socmcu.com

SC92F84H3/84H9/84H2

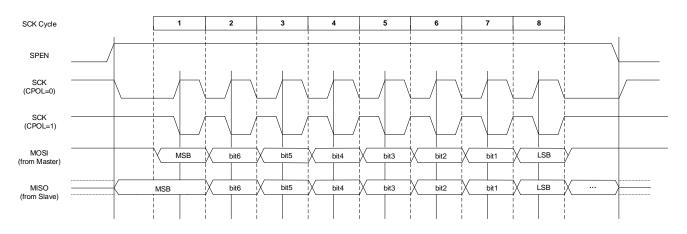
高速 1T 8051 内核 20 路高灵敏触控 Flash MCU

当主设备通过 MOSI 线传送数据给从设备时,相对应的从设备同时也通过 MISO 线将其发送移位寄存器的内 容传送给主设备的接收移位寄存器,实现全双工操作。因此,SPIF 标志位置 1 即表示传送完成也表示接收数 据完毕。从设备接收的数据按照 MSB 或 LSB 优先的传送方向存入主设备的接收移位寄存器。当一个字节的 数据完全被移入接收寄存器时,处理器可以通过读 SSDAT 寄存器获得该数据。

从模式

模式启动:

当 SSCONO 寄存器中的 MSTR 位清 0, SPI 在从模式下运行。

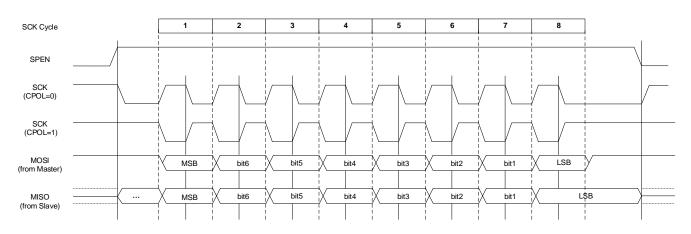

发送与接收:

从属模式下,按照主设备控制的 SCK 信号,数据通过 MOSI 引脚移入,MISO 引脚移出。一个位计数器记录 SCK 的边沿数, 当接收移位寄存器移入 8 位数据(一个字节)同时发送移位寄存器移出 8 位数据(一个字 节), SPIF 标志位被置 1。数据可以通过读取 SSDAT 寄存器获得。如果 SPI 中断被允许, 当 SPIF 置 1 时,也会产生一个中断。此时接收移位寄存器保持原有数据并且 SPIF 位置 1,这样 SPI 从设备将不会接收 任何数据直到 SPIF 清 0。SPI 从设备必须在主设备开始一次新的数据传送之前将要传送的数据写入发送移位 寄存器。如果在开始发送之前未写入数据,从设备将传送"0x00"字节给主设备。如果写 SSDAT 操作发生 在传送过程中,那么 SPI 从设备的 WCOL 标志位置 1,即如果传送移位寄存器已经含有数据,SPI 从设备的 WCOL 位置 1,表示写 SSDAT 冲突。但是移位寄存器的数据不受影响,传送也不会被中断。

16.1.4 传送形式

通过软件设置 SSCON0 寄存器的 CPOL 位和 CPHA 位,用户可以选择 SPI 时钟极性和相位的四种组合方式。 CPOL 位定义时钟的极性,即空闲时的电平状态,它对 SPI 传输格式影响不大。CPHA 位定义时钟的相位,即定 义允许数据采样移位的时钟边沿。在主从通讯的两个设备中、时钟极性相位的设置应一致。

当 CPHA = 0, SCK 的第一个沿捕获数据,从设备必须在 SCK 的第一个沿之前将数据准备好。



CPHA = 0 数据传输图

当 CPHA = 1,主设备在 SCK 的第一个沿将数据输出到 MOSI 线上,从设备把 SCK 的第一个沿作为开始发送 信号,SCK的第二沿开始捕获数据,因此用户必须在第一个SCK的两个沿内完成写SSDAT的操作。这种数据传 输形式是一个主设备一个从设备之间通信的首选形式。

Page 68 of 97 V1 0

CPHA = 1 数据传输图

16.1.5 出错检测

在发送数据序列期间写入 SSDAT 寄存器会引起写冲突, SSCON1 寄存器中的 WCOL 位置 1。WCOL 位置 1 不会引起中断,发送也不会中止。WCOL位需由软件清 0。

16.2 TWI

SSMOD[1:0] = 10, 三选一串行接口 SSI 配置为 TWI 接口。SC92F84HX 在 TWI 通信时只能做从机。

SSCON0 (9DH) TWI 控制寄存器 (读/写)

位编号	7	6	5	4	3	2	1	0
符号	TWEN	TWIF	-	GCA	AA		STATE[2:0]	
读/写	读/写	读/写	-	读	读/写	读/写	读/写	读/写
上电初始值	0	0	х	0	0	0	0	0

位编号	位符号	说明
7	TWEN	TWI 使能控制 0: 关闭 TWI
	IVVEN	1: 打开 TWI
6	TWIF	TWI 中断标志位 0: 由软件清零 1: 在下列条件下,中断标志位由硬件置 1 ①第一帧地址匹配成功 ②成功接收或发送 8 位数据 ③重新启动
4	GCA	④从机收到停止信号 通用地址响应标志位 0: 非响应通用地址 1: 当 GC 置 1,同时通用地址匹配时该位由硬件置 1,并自动清零
3	AA	接收使能位 0: 不允许接收主机发送的信息 1: 允许接收主机发送的信息
2~0	STATE[2:0]	状态机状态标志位 000: 从机处于空闲状态,等待 TWEN 置 1, 检测 TWI 启动信号。当从 机接收到停止条件后会跳转到此状态 001: 从机正在接收第一帧地址和读写位(第 8 位为读写位,1 为读,0

Page 69 of 97 V1.0

位编号	位符号	说明
		为写)。从机接收到起始条件后会跳转到此状态
		010: 从机接收数据状态
		011: 从机发送数据状态
		100: 在从机发送数据状态中,当主机回 UACK(应答位为高电平)时
		跳转到此状态,等待重新启动信号或停止信号。
		101: 从机处于发送状态时,将 AA 写 0 会进入此状态,等待重新启动
		信号或停止信号。
5	-	保留

SSCON1(9EH)TWI地址寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号				TWA[6:0]				GC
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~1	TWA[6:0]	TWI 地址寄存器
0	GC	TWI 通用地址使能 0: 禁止响应通用地址 1: 允许响应通用地址

SSDAT (9FH) TWI 数据缓存寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号		TWDAT[7:0]						
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	TWDAT[7:0]	TWI 数据缓存寄存器

16.2.1 信号描述

TWI 时钟信号线(SCL)

该时钟信号由主机发出,连接到所有的从机。每9个时钟周期传送一个字节数据。前8个周期作数据的传送, 最后一个时钟作为接收方应答时钟。

TWI 数据信号线(SDA)

SDA 是双向信号线,空闲时应为高电平,由 SDA 线上的上拉电阻拉高。

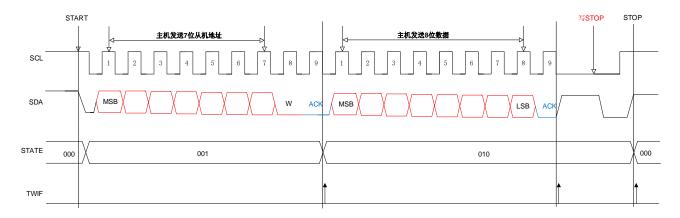
16.2.2 工作模式

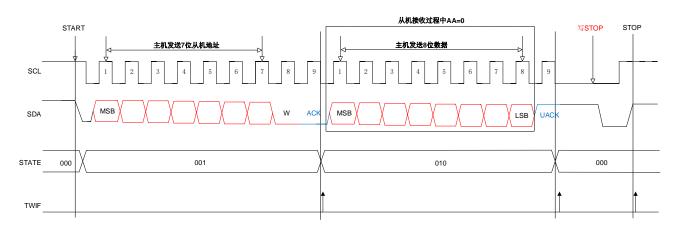
SC92F84HX的TWI通信只有从机模式:

模式启动:

当 TWI 使能标志位打开(TWEN = 1),同时接收到主机发送的启动信号时,模式启动。

从机从空闲模式(STATE[2:0] = 000) 进入接收第一帧地址(STATE[2:0] = 001) 状态,等待主机的第一 帧数据。第一帧数据由主机发送,包括了 7 位地址位和 1 位读写位, TWI 总线上所有从机都会收到主机的第 一帧数据。主机发送完第一帧数据后释放 SDA 信号线。若主机所发地址与某一从机自身地址寄存器中的值相 同,说明该从机被选中,被选中的从机会判断接总线上的第8位,即数据读写位(=1,读命令;=0,写命 令),然后占用 SDA 信号线,在 SCL 的第 9 个时钟周期给主机一个低电平的应答信号,之后会释放总线。 从机被选中后,会根据读写位的不同而进入不同的状态:

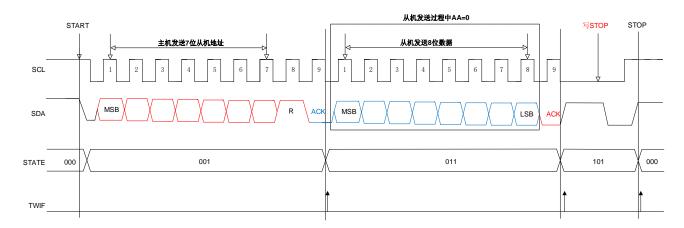

Page 70 of 97 V1 0


● 非通用地址响应,从机接收模式:

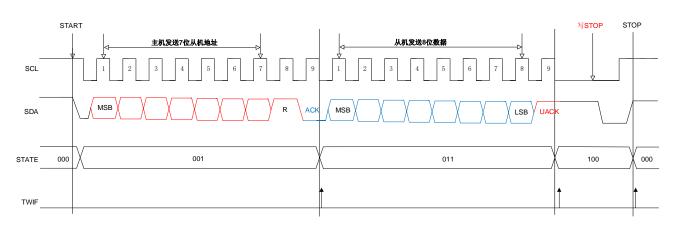
如果第一帧接收到的读写位是写(0),则从机进入到从机接收状态(STATE[2:0] = 010)等待接收主机发送的数据。主机每发送 8 位,都要释放总线,等待第 9 个周期从机的应答信号。

- 1. 如果从机的应答信号是低电平, 主机的通信可以有以下三种方式:
 - 1) 继续发送数据;
 - 2) 重新发送启动信号(start),此时从机重新进入接收第一帧地址(STATE[2:0] = 001)状态;
 - 3) 发送停止信号,表示本次传输结束,从机回到空闲状态,等待主机下一次的启动信号。

2. 如果从机应答的是高电平(在接收过程中,从机寄存器中的 AA 值改写为 0),表示当前字节传输完以后,从机会主动结束本次传输,回到空闲状态(STATE[2:0] = 000),不再接收主机发送的数据。

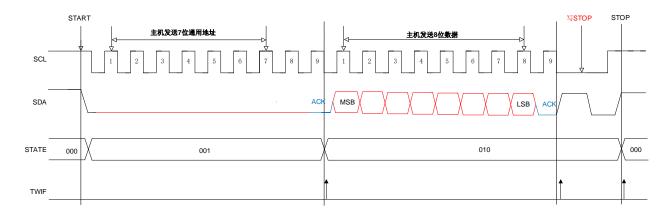


● 非通用地址响应,从机发送模式:


如果第一帧接收到的读写位是读(1),则从机会占用总线,向主机发送数据。每发送8位数据,从机释放总线,等待主机的应答:

1. 如果主机应答的是低电平,则从机继续发送数据。在发送过程中,如果从机寄存器中的 AA 值被改写为 0,则传输完当前字节从机会主动结束传输并释放总线,等待主机的停止信号或重新启动信号(STATE[2:0] = 101)。

Page 71 of 97 V1.0


2. 如果主机应答的是高电平,则从机 STATE[2:0] = 100,等待主机的停止信号或重新启动信号。

● 通用地址的响应:

GC=1 时,此时通用地址允许使用。从机进入到接收第一帧地址(STATE[2:0] = 001)状态,接收的第一帧数据中的地址位数据为 0x00,此时所有从机响应主机。主机发送的读写位是必须是写(0),所有从机接收后进入接收数据(STATE[2:0] = 010)状态。主机每发送 8 个数据释放一次 SDA 线,并读取 SDA 线上的状态:

- 1. 如果有从机应答,则主机的通信可以有以下三种方式:
 - 1) 继续发送数据;
 - 2) 重新启动;
 - 3) 发送停止信号,结束本次通讯。

2. 如果无从机应答,则 SDA 为空闲状态。

注意: 在一主多从模式下使用通用地址时,主机发送的读写位不能为读(1)状态,否则除发送数据的设备, Page 72 of 97 V1.0

总线上其它设备均会响应。

16.2.3 操作步骤

三合一串口中 TWI 工的操作步骤如下:

- ① 配置 SSMOD[1:0], 选择 TWI 模式;
- ② 配置 SSCON0 TWI 控制寄存器;
- ③ 配置 SSCON1 TWI 地址寄存器;
- ④ 如果从机接收数据,则等待 SSCON0 中的中断标志位 TWIF 置 1。从机每接收到 8 位数据,中断标志位会被 置 1。中断标志位需手动清零;
- ⑤ 如果从机发送数据,则要将待发送的数据写进 TWDAT 中,TWI 会自动将数据发送出去。每发送 8 位,中断标志位 TWIF 就会被置 1。

16.3 UART1

SSMOD[1:0] = 11, 三选一串行接口 SSI 配置为 UART 接口。

SSCON0 (9DH) 串口 1 控制寄存器 (读/写)

位编号	7	6	5	4	3	2	1	0
符号	SM0	-	SM2	REN	TB8	RB8	TI	RI
读/写	读/写	•	读/写	读/写	读/写	读/写	读/ 写 1 清零	读/ 写 1 清零
上电初始值	0	Х	0	0	0	0	0	0

位编号	位符号	说明
7	SM0	串行通信模式控制位 0:模式 1,10 位全双工异步通信,由 1 个起始位,8 个数据位和 1 个停止位组成,通信波特率可变; 1:模式 3,11 位全双工异步通信,由 1 个起始位,8 个数据位,一个可编程的第 9 位和 1 个停止位组成,通信波特率可变;
5	SM2	串行通信模式控制位 2, 此控制位只对模式 3 有效 0: 每收到一个完整的数据帧就置位 RI 产生中断请求; 1: 收到一个完整的数据帧时,只有当 RB8=1 时才会置位 RI 产生中断请求。
4	REN	接收允许控制位 0: 不允许接收数据; 1: 允许接收数据。
3	TB8	只对模式3有效,为发送数据的第9位
2	RB8	只对模式3有效,为接收数据的第9位
1	TI	发送中断标志位
0	RI	接收中断标志位
6	-	保留

SSCON1(9EH)串口1波特率控制寄存器低位(读/写)

Page 73 of 97 V1.0 http://www.socmcu.com

SC92F84H3/84H9/84H2

高速 1T 8051 内核 20 路高灵敏触控 Flash MCU

	位编号	7	6	5	4	3	2	1	0
	符号				BAUD	L [7:0]			
	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
Г	上电初始值	0	0	0	0	0	0	0	0

SSCON2 (95H) 串口 1 波特率控制寄存器高位(读/写)

位编号	7	6	5	4	3	2	1	0
符号				BAUD	H [7:0]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
		串口波特率控制
7~0	BAUD [15:0]	BaudRate = f _{SYS} BAUD1H,BAUD1L 注意 : [BAUD1H,BAUD1L] 必须大于 0x0010

SSDAT (9FH) 串口数据缓存寄存器(读/写)2

位编号	7	6	5	4	3	2	1	0
符号				SBUF	[7:0]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	SBUF[7:0]	申口数据缓存寄存器 SBUF 包含两个寄存器:一个发送移位寄存器和一个接收锁存器,写入 SBUF 的数据将送至发送移位寄存器,并启动发送流程,读 SBUF 将返 回接收锁存器中的内容。

Page 74 of 97 V1.0

17 模数转换 ADC

SC92F84HX 内建一个 12-bit 21 通道的高精度逐次逼近型 ADC , 外部的 20 路 ADC 和 IO 口的其它功能复用。ADC 内部还有一个通道可选择到 1/4 Vpp, 配合内部 2.4V 参考电压用于测量 Vpp 电压。 ADC 的参考电压可以有 2 种选择:

- ① VDD 管脚(即直接是内部的 V_{DD});
- ② 内部 Regulator 输出的参考电压精准的 2.4V(此时 MCU 供电电压 V_{DD} 不可低于 2.9V)。

注意: ADC 电路的时钟源固定为 f_{HRC} = 24MHz,不会随着内外系统时钟的切换而改变。

17.1 ADC 相关寄存器

ADCCON (ADH) ADC 控制寄存器 (读/写)

位编号	7	6	5	4	3	2	1	0
符号	ADCEN	ADCS	ADCIF			ADCIS[4:0]		
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	n

位编号	位符号	说明
江州の	177.10 J	启动 ADC 的电源
7	ADCEN	0: 关闭 ADC 模块电源
,	ADCLIN	1: 开启 ADC 模块电源
		ADC 开始触发控制(ADC Start)
		对此 bit 写"1",开始做一次 ADC 的转换,即该位只是 ADC 转换的触
6	ADCS	发信号。此位只可写入 1 有效。
	ADCO	注意:对 ADCS 写 "1"后,到中断标志 ADCIF 置起前不要对
		ADCCON 寄存器进行写操作
		ADC 中断请求标志(ADC Interrupt Flag)
		0: 转换尚未完成
		1: ADC 转换完成。需用户软件清除
5	ADCIF	ADC 中断请求标志 ADCIF:
		此位同时也当作是 ADC 中断的中断请求标志,如果用户使能 ADC 中
		断,那么在 ADC 的中断发生后,用户必须用软件清除此位。
		ADC 输入通道选择(ADC Input Selector)
		00000: 选用 AINO 为 ADC 的输入
		00001: 选用 AIN1 为 ADC 的输入
		00010: 选用 AIN2 为 ADC 的输入
		00011: 选用 AIN3 为 ADC 的输入
		00100: 选用 AIN4 为 ADC 的输入
		00101: 选用 AIN5 为 ADC 的输入
		00110: 选用 AIN6 为 ADC 的输入
		00111: 选用 AIN7 为 ADC 的输入
4~0	ADCIS[4:0]	01000: 选用 AIN8 为 ADC 的输入
		01001: 选用 AIN9 为 ADC 的输入
		01010: 选用 AIN10 为 ADC 的输入
		01011: 选用 AIN11 为 ADC 的输入
		01100: 选用 AIN12 为 ADC 的输入
		01101: 选用 AIN13 为 ADC 的输入
		01110: 选用 AIN14 为 ADC 的输入
		01111: 选用 AIN15 为 ADC 的输入
		10000: 选用 AIN16 为 ADC 的输入
		10001: 选用 AIN17 为 ADC 的输入
D 75 (07		1/4.0

Page 75 of 97 V1.0 http://www.socmcu.com

位编号	位符号	说明
		10010: 选用 AIN18 为 ADC 的输入
		10011:选用 AIN19 为 ADC 的输入
		10100~11110: 保留
		11111: ADC 输入为 1/4 VDD,可用于测量电源电压

ADCCFG2(B5H) ADC设置寄存器 2(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	LOWSP		ADCCK[2:0]	
读/写	-	-	-	-	读/写	读/写	读/写	读/写
上电初始值	х	х	х	х	0	0	0	0

位编号	位符号	说明
3	LOWSP	ADC 采样时钟频率选择(ADC Sampling Clocks Selector) 0: 设定 ADC 采样时间为 6 个 ADC 采样时钟周期 1: 设定 ADC 采样时间为 36 个 ADC 采样时钟周期 LOWSP 控制的是 ADC 的采样时钟频率,ADC 的转换时钟频率由 ADCCK[2:0]控制,不受 LOWSP 位的影响 ADC 需经历 6 或 36 个 ADC 采样时钟加上 14 个 ADC 转换时钟的时间 才能完成从采样到转换的整个过程,因此在实际使用中,ADC 从采样到 完成转换的总时间计算如下: LOWSP=0: TADC1=(6+14)/fADC; LOWSP=1: TADC2=(36+14)/fADC
2~0	ADCCK[2:0]	ADC 采样时钟频率选择(ADC Sampling Clocks Selector) 000: 设定 ADC 的时钟频率 fade 为 fhre/32; 001: 设定 ADC 的时钟频率 fade 为 fhre/24; 010: 设定 ADC 的时钟频率 fade 为 fhre/16; 011: 设定 ADC 的时钟频率 fade 为 fhre/12; 100: 设定 ADC 的时钟频率 fade 为 fhre/8; 101: 设定 ADC 的时钟频率 fade 为 fhre/6; 110: 设定 ADC 的时钟频率 fade 为 fhre/4; 111: 设定 ADC 的时钟频率 fade 为 fhre/3 注意: ADC 电路的时钟频面定为 fhre = 24MHz,不会随着内外系统时钟的切换而改变。
7~4	-	保留

ADCCFG0 (ABH) ADC 设置寄存器 0 (读/写)

位编号	7	6	5	4	3	2	1	0
符号	EAIN7	EAIN6	EAIN5	EAIN4	EAIN3	EAIN2	EAIN1	EAIN0
读/写								
上电初始值	0	0	0	0	0	0	0	0

ADCCFG1(ACH)ADC设置寄存器 1(读/写)

位编号	7	6	5	4	3	2	1	0
符号	EAIN15	EAIN14	EAIN13	EAIN12	EAIN11	EAIN10	EAIN9	EAIN8
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

ADCCFG3(AAH)ADC设置寄存器1(读/写)

Г	45 4-5- H		-		_	_	_	_	_
	位编号	7	6	5	4	3	2	1	0
Ī	符号	-	-	-	-	EAIN19	EAIN18	EAIN17	EAIN16

Page 76 of 97 V1.0

SC92F84H3/84H9/84H2

高速 1T 8051 内核 20 路高灵敏触控 Flash MCU

位编号	7	6	5	4	3	2	1	0
读/写	-	-	-	-	读/写	读/写	读/写	读/写
上电初始值	х	х	х	х	0	0	0	0

位编号	位符号	说明
0	EAINx (x=0~19)	ADC 端口设置寄存器 0: AINx 对应端口不可作为 ADC 输入通道 1: AINx 对应端口可作为 ADC 输入通道, 当 ADCIS[4:0]选择 AINx 作
	(X=0~19)	为 ADC 输入通道时,AINx 对应端口的上拉电阻将自动移除。

OP_CTM1 (C2H@FFH) Customer Option 寄存器 1 (读/写)

位编号	7	6	5	4	3	2	1	0
符号	VREFS	-	-	DISJTG	IAPS	S[1:0]	-	-
读/写	读/写	-	-	读/写	读/写	读/写	-	-
上电初始值	n	Х	Х	n	n	n	Х	Х

位编号	位符号	说明
7	VREFS	参考电压选择(初始值从 Code Option 调入,用户可修改设置) 0: 设定 ADC 的 VREF 为 Voo 1: 设定 ADC 的 VREF 为内部准确的 2.4V

ADCVL(AEH) ADC 转换数值寄存器(低位)(读/写)

位编号	7	6	5	4	3	2	1	0
符号		ADCV[3:0]			-	-	-	-
读/写	读/写	读/写	读/写	读/写	-	-	-	-
上电初始值	0	0	0	0	Х	Х	Х	Х

ADCVH(AFH) ADC 转换数值寄存器(高位)(读/写)

位编号	7	6	5	4	3	2	1	0
符号		ADCV[11:4]						
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
11~4	ADCV[11:4]	ADC 转换值的高 8 位数值
3~0	ADCV[3:0]	ADC 转换值的低 4 位数值

IE(A8H)中断使能寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	EA	EADC	ET2	-	ET1	EINT1	ET0	EINT0
读/写	读/写	读/写	读/写	-	读/写	读/写	读/写	读/写
上电初始值	0	0	0	Х	0	0	0	0

位编号	位符号	说明
6	EADC	ADC 中断使能控制 0: 不允许 ADCIF 产生中断 1: 允许 ADCIF 产生中断

IP(B8H)中断优先权寄存器(读/写)

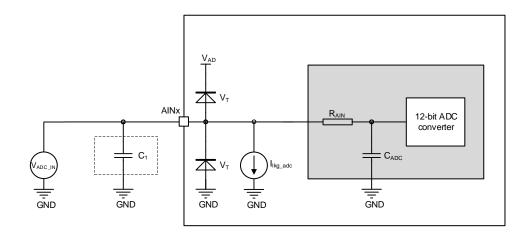
Page 77 of 97

V1.0

http://www.socmcu.com

位编号	7	6	5	4	3	2	1	0
符号	-	IPADC	IPT2	-	IPT1	IPINT1	IPT0	IPINT0
读/写	-	读/写	读/写	-	读/写	读/写	读/写	读/写
上由初始店	V	0	0	V	0	0	0	0

位编号	位符号	说明
6	IPADC	ADC 中断优先权选择 0: 设定 ADC 的中断优先级是"低" 1: 设定 ADC 的中断优先级是"高"


17.2 ADC 转换步骤

用户实际进行 ADC 转换所需要的操作步骤如下:

- ① 设定 ADC 输入管脚; (设定 AINx 对应的位为 ADC 输入,通常 ADC 管脚会预先固定)
- ② 设定 ADC 参考电压 Vref,设定 ADC 转换所用的频率;
- ③ 开启 ADC 模块电源;
- (4) 选择 ADC 输入通道; (设置 ADCIS 位,选择 ADC 输入通道)
- ⑤ 启动 ADCS, 转换开始;
- ⑥ 等待 ADCIF=1,如果 ADC 中断使能,则 ADC 中断会产生,用户需要软件清 0 ADCIF 标志;
- ⑦ 从 ADCVH、ADCVL 获得 12 位数据, 先高位后低位, 一次转换完成;
- (8) 如不换输入通道,则重复 5~7 的步骤,进行下一次转换。

注意:在设定 IE[6] (EADC)前,使用者最好用软件先清除 ADCIF,并且在 ADC 中断服务程序执行完时, 也清除该 ADCIF, 以避免不断的产生 ADC 中断。

17.3 ADC 连接电路图

说明:

- ① C1 为外接 0.01µF 电容,建议用户增加此电容以提升 ADC 性能;
- ② ADC 相关电气参数详见章节 21.5 ADC 电气特性。

V1.0 Page 78 of 97

18 高灵敏度触控电路

SC92F84HX 内建一个 20 通道的高灵敏度电容触控电路,其特点如下:

- 1. 可适应隔空按键触控、接近感应等对灵敏度要求较高的触控应用
- 可通过 10V 动态 CS 测试
- 3. 可实现 20 路触控按键及衍生功能
- 4. 高灵活度开发软件库支持,低开发难度
- 5. 自动化调试软件支持,智能化开发
- 6. 触控模块可以在 MCU STOP 模式下进入低功耗模式工作,单个触控按键唤醒时芯片整体功耗可低至 8uA

注意: 高灵敏度触控电路的时钟源固定为 f_{HRC} = 24MHz,不会随着内外系统时钟的切换而改变。

18.1 触控电路的耗电模式

SC92F84HX 允许在 STOP Mode 开启触控扫描功能:这样的方式可以降低 MCU 的整体功耗从而满足有低功 耗需求的触控应用。

用户可以理解为 SC92F84HX 的触控电路具有两种耗电模式:

- 1. 普通运行模式
- 2. 低功耗运行模式

两种耗电模式的定义如下:

说明	普通运行模式	低功耗运行模式		
CPU	RUN (Normal mode)	stop(STOP Mode)		
触控电路	RUN	RUN		

V1.0 Page 79 of 97

19 EEPROM 及 IAP 操作

SC92F84HX的IAP操作空间范围有两种模式可选:

EEPROM 及 IAP 操作模式如下:

- 1. 内部最高位地址的 128 bytes EEPROM 可以作为数据存储使用;
- 2. IC 整个 ROM 空间的 16 Kbytes 范围及 128 bytes EEPROM 内都可进行 IAP 操作,主要用作远程程序更 新使用。

IAP 操作空间选择作为 Code Option 在编程器写入 IC 时选择:

OP_CTM1 (C2H@FFH) Customer Option 寄存器 1 (读/写)

位编号	7	6	5	4	3	2	1	0
符号	VREFS	-	-	DISJTG	IAPS	S[1:0]	-	-
读/写	读/写	-	-	读/写	读/写	读/写	-	-
上电初始值	n	Х	Х	n	n	n	Х	Х

位编号	位符号	说明
3~2	IAPS[1:0]	EEPROM 及 IAP 空间范围选择 00: Code 区域禁止 IAP 操作,仅 EEPROM 区域可作为数据存储使用 01: 最后 0.5K Code 区域允许 IAP 操作(3E00H~3FFFH) 10: 最后 1K Code 区域允许 IAP 操作(3C00H~3FFFH) 11: 全部 Code 区域允许 IAP 操作(0000H~3FFFH)

19.1 EEPROM / IAP 操作相关寄存器

EEPROM / IAP 操作相关寄存器说明,

	. •		/ 4 •								
符号	地址	说明	7	6	5	4	3	2	1	0	Reset 值
IAPKEY	F1H	IAP 保护寄存器		IAPKEY[7:0]				0000000b			
IAPADL	F2H	IAP 写入地址低位 寄存器		IAPADR[7:0]				0000000b			
IAPADH	F3H	IAP 写入地址高位 寄存器	-	-			IAPAD	R[13:8]			xx000000b
IAPADE	F4H	IAP 写入扩展地址 寄存器		IAPADER[7:0]				0000000b			
IAPDAT	F5H	IAP 数据寄存器		IAPDAT[7:0]				0000000b			
IAPCTL	F6H	IAP 控制寄存器	-	ı	-	-	PAYT [1:		СМЕ	D[1:0]	xxxx0000b

IAPKEY(F1H)IAP保护寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号		IAPKEY[7:0]						
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	IAPKEY[7:0]	打开 EEPROM / IAP 功能及操作时限设置写入一个非零值 n,代表: ① 打开 EEPROM / IAP 功能; ② n 个系统时钟后如果接收不到写入命令,则 EEPROM / IAP 功能被重新关闭。

Page 80 of 97 V1.0

IAPADL(F2H)IAP 写入地址低位寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号		IAPADR[7:0]						
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	IAPADR[7:0]	EEPROM / IAP 写入地址的低 8 位

IAPADH(F3H)IAP 写入地址高位寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-			IAPAD	R[13:8]		
读/写	-	-	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	х	х	0	0	0	0	0	0

位编号	位符号	说明
5~0	IAPADR[13:8]	EEPROM / IAP 写入地址的高 6 位
7~6	-	保留

IAPADE (F4H) IAP 写入扩展地址寄存器 (读/写)

位编号	7	6	5	4	3	2	1	0
符号				IAPADI	ER[7:0]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	IAPADER[7:0]	IAP 扩展地址: 0x00: MOVC 和 IAP 烧写都针对 Code 进行 0x01: 针对用户 ID 区域进行读操作,不可进行写操作 0x02: MOVC 和 IAP 烧写都针对 EEPROM 进行 其它: 保留

IAPDAT (F5H) IAP 数据寄存器 (读/写)

	位编号	7	6	5	4	3	2	1	0
Ī	符号				IAPDA	T[7:0]			
Ī	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
Ī	上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	IAPDAT	IAP写入的数据

IAPCTL (F6H) IAP 控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	PAYTIMES[1:0]		CMD[1:0]	
读/写	-	-	-	-	读/写	读/写	读/写	读/写
上电初始值	Х	Х	Х	Х	0	0	0	0

位编号	位符号	说明
3~2	3~2 PAYTIMES[1:0]	EEPROM / IAP 写入操作时,CPU Hold Time 时间长度设定
3~2	TATTIMES[1.0]	00:设定 CPU HOLD TIME 4mS@12/6/2MHz

Page 81 of 97 V1.0

位编号	位符号	说明
		01:设定 CPU HOLD TIME 2mS@12/6/2MHz
		10:设定 CPU HOLD TIME 1mS@12/6/2MHz
		11: 保留
		说明: CPU Hold 的是 PC 指针,其他功能模块继续工作;中断标志会
		被保存,并在 Hold 结束后进入中断,但多次的中断只能保留最后一
		次。
		选择建议:
		1.V _{DD} 在 2.7V~5.5V,可选择 10
		2.V _{DD} 在 2.4V~5.5V,可选择 01 或者 00
		EEPROM / IAP 写入操作命令
		10: 写入
1~0	CMD[1:0]	其它: 保留
		注意: EEPROM / IAP 写操作的语句后面务必要加上至少 8 个 NOP 指
		令,以保证 IAP 操作完成后可正常执行后续的指令!

19.2 EEPROM / IAP 操作流程

SC92F84HX 的 EEPROM / IAP 的写入流程如下:

- ① 写入 IAPADE[7:0] , 0x00: 选择 Code 区, 进行 IAP 操作; 0x02: 选择 EEPROM 区, 进行 EEPROM 读写操作;
- ② 写入 IAPDAT[7:0] (准备好 EEPROM / IAP 写入的数据);
- ③ 写入 {IAPADR[13:8], IAPADR[7:0]}(准备好 EEPROM / IAP 操作的目标地址);
- ④ 写入 IAPKEY[7:0] 写入一个非 0 的值 n (打开 EEPROM / IAP 保护,且在 n 个系统时钟内没收到写入命令 EEPROM / IAP 会被关闭);
- ⑤ 写入 IAPCTL[3:0] (设定 CPU Hold 时间,写入 CMD[1:0]为 1、0,CPU Hold 并启动 EEPROM / IAP 写入):
- ⑥ EEPROM / IAP 写入结束, CPU 继续后续操作;

注意:

- 1. 编程 IC 时,若通过 Code Option 选择了"Code 区域禁止 IAP 操作",则 IAPADE[7:0]=0x00 时(选择 Code 区),IAP不可操作,即数据无法写入,仅可通过 MOVC 指令读取数据。
- 2. 当 IAPADE=0x01 或 0x02 时,MOVC 和写入是针对 EEPROM 或 IFB 区域进行,此时如果有中断产生,且中断内有 MOVC 操作,会造成 MOVC 的结果错误,导致程序运行异常。为避免这种情况的发生,请用户在 IAPADE=0x01 或 0x02 操作前务必要关闭总中断(EA=0),操作完成后设置 IAPADE =0x00 再打开总中断(EA=1)。

19.2.1 128 BYTES 独立 EEPROM 操作例程

#include "intrins.h"
unsigned char EE_Add;
unsigned char EE_Data;
unsigned char code * POINT =0x0000;

EEPROM 写操作 C 的 Demo 程序:

EA = 0; // 关总中断

IAPADE = 0x02; //选择 EEPROM 区域

IAPDAT = EE_Data; //送数据到 EEPROM 数据寄存器

Page 82 of 97 V1.0 http://www.socmcu.com

IAPADH = 0x00: //高地址默认写 0x00

IAPADL = EE Add; //写入 EEPROM 目标地址低位值

IAPKEY = 0xF0;//此值可根据实际调整;需保证本条指令执行后到对 IAPCTL 赋值前,

//时间间隔需小于 240 (0xf0) 个系统时钟, 否则 IAP 功能关闭;

// 开启中断时要特别注意

IAPCTL = 0x0A;//执行 EEPROM 写入操作, 1ms@12M/6M/2M:

//等待(至少需要8个_nop_()) _nop_();

nop();

nop();

nop();

nop();

nop();

nop();

nop();

nop();

//返回 ROM 区域 IAPADE = 0x00;

//开总中断 EA = 1;

EEPROM 读操作 C 的 Demo 程序:

EA = 0: //关总中断

IAPADE = 0x02;//选择 EEPROM 区域

EE Data = *(POINT +EE Add); //读取 IAP Add 的值到 IAP Data

//返回 ROM 区域,防止 MOVC 操作到 EEPROM IAPADE = 0x00;

//开总中断 EA = 1;

19.2.2 16 KBYTES CODE 区域 IAP 操作例程

#include "intrins.h"

unsigned int IAP Add;

unsigned char IAP_Data;

unsigned char code * POINT =0x0000;

IAP 写操作 C 的 Demo 程序:

IAPADE = 0x00: //选择 Code 区域

IAPDAT = IAP Data: //送数据到 IAP 数据寄存器

IAPADH = (unsigned char)((IAP_Add >> 8)); //写入 IAP 目标地址高位值 IAPADL = (unsigned char)IAP_Add; //写入 IAP 目标地址低位值

IAPKEY = 0xF0;//此值可根据实际调整; 需保证本条指令执行后到对 IAPCTL 赋值前,

//时间间隔需小于 240 (0xf0) 个系统时钟, 否则 IAP 功能关闭;

//开启中断时要特别注意

//执行 IAP 写入操作, 1ms@12M/6M/2M; IAPCTL = 0x0A;

//等待(至少需要8个 nop ()) _nop_();

nop();

nop();

nop();

nop();

nop();

nop();

nop();

nop();

Page 83 of 97 http://www.socmcu.com

V1 0

IAP 读操作 C 的 Demo 程序:

IAPADE = 0x00;//选择 Code 区域

//读取 IAP_Add 的值到 IAP_Data IAP_Data = *(POINT+IAP_Add);

注意: 16 Kbytes Code 区域内的 IAP 操作有一定的风险,需要用户在软件中做相应的安全处理措施,如果操 作不当可能会造成用户程序被改写!除非用户必需此功能(比如用于远程程序更新等),不建议用户使用。

Page 84 of 97 V1.0

SC92F84H3/84H9/84H2

高速 1T 8051 内核 20 路高灵敏触控 Flash MCU

20 CHECK SUM 模块

SC92F84HX 内建了 1 个 check sum 模块,可用来实时生成程序代码的 16 位 check sum 值,用户可利用此 check sum 和理论值比较,监测程序区的内容是否正确。

注意: check sum 值是整个程序区的数据累加和,即 0000H~3FFDH 地址单元所有的数据。若地址单元中有 用户上次操作后的残留值,会导致 check sum 值与理论值不符。因此,建议用户对整片 code 区域进行擦除或写 0操作后再烧录代码以保证 check sum 值与理论值一致。

20.1 CHECK SUM 校验操作相关寄存器

CHKSUML (FCH) Check Sum 结果寄存器低位(只读)

位编号	7	6	5	4	3	2	1	0	
符号		CHKSUML[7:0]							
读/写	只读	只读	只读	只读	只读	只读	只读	只读	
上电初始值	0	0	0	0	0	0	0	0	

位编号	位符号	说明
7~0	CHKSUML [7:0]	Check Sum 结果寄存器低位

CHKSUMH (FDH) Check Sum 结果寄存器高位(只读)

位编号	7	6	5	4	3	2	1	0
符号				CHKSU	MH[7:0]			
读/写	只读	只读	只读	只读	只读	只读	只读	只读
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	CHKSUMH [7:0]	Check Sum 结果寄存器高位

OPERCON (EFH) 运算控制寄存器 (读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	-	-	-	CHKSU MS
读/写	-	-	-	-	-	-	-	读/写
上电初始值	Х	Х	Х	Х	х	Х	Х	0

位编号	位符号	说明
0	CHKSUMS	Check sum 运算开始触发控制(Start) 对此 bit 写"1",开始做一次 check sum 计算。此位只可写入 1 有效。

V1.0 Page 85 of 97

21 电气特性

21.1 极限参数

符号	参数	最小值	最大值	UNIT
VDD/VSS	直流供电电压	-0.3	6	V
Voltage ON any Pin	任一管脚输入/输出电压	-0.3	V _{DD} +0.3	V
T _A	工作环境温度	-40	85	${\mathbb C}$
T _{STG}	储存温度	-55	125	$^{\circ}$
I _{VDD}	流过 VDD 的电流值	-	150	mA
I _{VSS}	流过 VSS 的电流值	-	150	mA

21.2 推荐工作条件

符号	参数	最小值	最大值	UNIT	系统时钟频率
V_{DD}	工作电压	2.4	5.5	V	12MHz
T _A	工作环境温度	-40	85	${\mathbb C}$	-

21.3 直流电气特性

(V_{DD} = 5V, T_A = +25℃, 除非另有说明)

符号	参数	最小值	典型值	最大值	单位	测试条件			
	电流								
I _{op1}	工作电流	-	6.5	-	mA	f _{SYS} =12MHz			
I _{op2}	工作电流	-	5.1	-	mA	f _{SYS} =6MHz			
I _{op3}	工作电流	-	4.2	-	mΑ	f _{SYS} =2MHz			
I _{pd1}	待机电流 (Power Down 模式)	-	0.7	1.0	μΑ				
I _{IDL1}	待机电流 (IDLE 模式)	-	3.8	-	mA				
Івтм	Base Timer 工作电流	-	4	6	μΑ	BTMFS[3:0]=1000 每 4.0 秒产生一个中断			
lwdт	WDT 电流	-	2.5	3.5	μΑ	WDTCKS[2:0]=000 WDT溢出时间 500ms			
I _{TK1}	高灵敏度 Touch key 工作电流	-	1.3	1.7	mA				
		IO 🏻	持性						
V _{IH1}	输入高电压	$0.7V_{DD}$	-	V _{DD} +0.3	V				
V _{IL1}	输入低电压	-0.3		0.3V _{DD}	V				
V_{IH2}	输入高电压	$0.8V_{DD}$		V_{DD}	V	施密特触发输入:			
V_{IL2}	输入低电压	-0.2	-	$0.2V_{DD}$	V	RST/tCK/SCK			
I _{OL1}	输出低电流	-	50	-	mA	V _{Pin} =0.4V			
I _{OL2}	输出低电流	-	100	-	mA	V _{Pin} =0.8V			
Іон1	输出高电流 P1/P5	-	20	-	mA	V _{Pin} =4.3V			
I _{OH2}	输出高电流 P1/P5	-	10	-	mA	V _{Pin} =4.7V			
I _{ОН3}	输出高电流 P0/P2	-	20	-	mA	V _{Pin} =4.3V Pxyz=0,I _{OH} 等级 0			

Page 86 of 97 V1.0 http://www.socmcu.com

						V _{Pin} =4.3V	
	输出高电流 P0/P2	-	10	-	mA	VPin=4.3V Pxyz=1,Ioн等级 1	
	输出高电流 P0/P2	_	5.5	-	mA	V _{Pin} =4.3V	
	III II		0.0			Pxyz=2,I _{OH} 等级 2	
	於山京山沟 D 0/ D 2		4.0		A	V _{Pin} =4.3V	
	输出高电流 P0/P2	-	1.8	-	mA	Pxyz=3,Iон等级 3	
	 输出高电流 P0/P2		9.7		mΛ	$V_{Pin}=4.7V$	
	制出同电视 PU/P2	-	9.7	-	mA	Pxyz=0,Ion等级 0	
	松山京山滨 DO/D2		1 E		∞ Λ	V _{Pin} =4.7V	
	输出高电流 P0/P2		4.5	-	mA	Pxyz=1,I _{OH} 等级 1	
I _{OH4}	於山京中次 DO/DO		т Л	V _{Pin} =4.7V			
	输出高电流 P0/P2	-	2.4	-	mA	Pxyz=2,Iон等级 2	
	烧山京山滨 DO/D2		0.0		m Λ	V _{Pin} =4.7V	
	输出高电流 P0/P2	-	0.8	-	mA	Pxyz=3,Iон等级 3	
	於)是由法	4		4		IO 为高阻输入模式	
I _{lkg1}	输入漏电流	-1	-	1	μΑ	Vin= Vdd 或 Vss	
R _{PH1}	上拉电阻	16.5	33	49.5	kΩ	V _{IN} =V _{SS}	
	做为 ADC 参考电压的内部基准 2.4V						
V _{DD24}	内部基准 2.4V 电压输出	2.38	2.40	2.42	V	TA=-40~85°C	

(V_{DD} = 3.3V, T₄ = +25℃, 除非另有说明)

(V _{DD} = 3.3V,T _A = +25℃,除非另有说明)							
符号	参数	最小值	典型值	最大值	单位	测试条件	
电流							
I _{op4}	工作电流	-	5.6	-	mA	fsys =12MHz	
I _{op5}	工作电流	-	4.5	-	mA	f _{SYS} =6MHz	
I _{op6}	工作电流	-	3.7	-	mA	f _{SYS} =2MHz	
I _{pd2}	待机电流 (Power Down 模式)	-	0.6	1.0	μΑ		
I _{IDL2}	待机电流 (IDLE 模式)	-	3.2	-	mA		
I _{TK2}	高灵敏度 Touch key 工作电流	-	1.2	1.5	mA		
		IO □	导性				
V _{IH3}	输入高电压	0.7V _{DD}	-	V _{DD} +0.3	V		
V _{IL3}	输入低电压	-0.3	-	0.3V _{DD}	V		
V _{IH4}	输入高电压	0.8V _{DD}	-	V_{DD}	V	施密特触发输入:	
V _{IL4}	输入低电压	-0.2	-	0.2V _{DD}	V	RST/tCK/SCK	
I _{OL3}	输出低电流	-	70	-	mA	V _{Pin} =0.8V	
I _{OL4}	输出低电流	-	40	-	mA	V _{Pin} =0.4V	
Іон5	输出高电流 P1/P5	-	7	-	mA	V _{Pin} =3.0V	
	输出高电流 P0/P2	-	7	-	mA	V _{Pin} =3.0V Pxyz=0,I _{OH} 等级 0	
Іон6	输出高电流 P0/P2	-	4	-	mA	V _{Pin} =3.0V Pxyz=0,I _{OH} 等级 1	
Юнь	输出高电流 P0/P2	-	1.8	-	mA	V _{Pin} =3.0V Pxyz=0,I _{OH} 等级 2	
	输出高电流 P0/P2	-	0.6	-	mA	V _{Pin} =3.0V Pxyz=0,I _{OH} 等级 3	
I _{lkg2}	输入漏电流	-1	-	1	μΑ	IO 为高阻输入模式 Vin= Vdd 或 Vss	
R _{PH2}	上拉电阻	28	56	84	kΩ	V _{IN} =V _{SS}	
	做为 AD	C参考电压	的内部基准	佳 2.4V			
V _{DD24}	内部基准 2.4V 电压输出	2.38	2.40	2.42	V	Ta=-40~85°C	

V1.0

21.4 交流电气特性

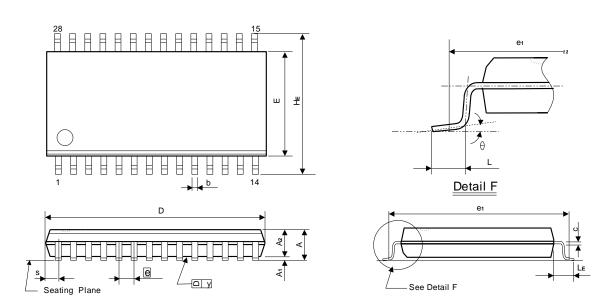
(V_{DD} = 2.4V ~ 5.5V, T_A = 25℃, 除非另有说明)

参数	最小值	典型值	最大值	单位	测试条件
外接 32.768kHz 振荡器起振时间	1	-	1	S	外接 32.768kHz 晶振
Power On Reset 时间	ı	12	18	ms	
Power Down 模式唤醒时间	ı	65	130	μs	
复位脉冲宽度	18	-	ı	μs	低电平有效
LVR 消抖时间	ı	30	ı	μs	T _{LVR}
RC 振荡稳定性	23.76	24	24.24	MHz	V _{DD} =2.9~5.5V TA=-40~85 °C
	外接 32.768kHz 振荡器起振时间 Power On Reset 时间 Power Down 模式唤醒时间 复位脉冲宽度 LVR 消抖时间	外接 32.768kHz 振荡器起振时间 - Power On Reset 时间 - Power Down 模式唤醒时间 - 复位脉冲宽度 18 LVR 消抖时间 -	外接 32.768kHz 振荡器起振时间 - - Power On Reset 时间 - 12 Power Down 模式唤醒时间 - 65 复位脉冲宽度 18 - LVR 消抖时间 - 30	外接 32.768kHz 振荡器起振时间 - - 1 Power On Reset 时间 - 12 18 Power Down 模式唤醒时间 - 65 130 复位脉冲宽度 18 - - LVR 消抖时间 - 30 -	外接 32.768kHz 振荡器起振时间 - - 1 s Power On Reset 时间 - 12 18 ms Power Down 模式唤醒时间 - 65 130 μs 复位脉冲宽度 18 - - μs LVR 消抖时间 - 30 - μs

21.5 ADC 电气特性

(T_A = 25℃,除非另有说明)

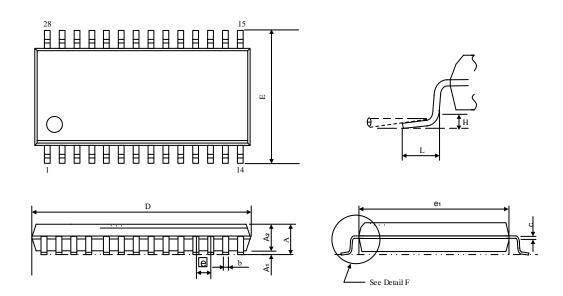
符号	参数	最小值	典型值	最大值	单位	测试条件
V _{AD}	供电电压	2.4	5.0	5.5	V	
N_R	精度	-	12	ı	bit	$GND \le V_{AIN} \le V_{DD}$
V _{AIN}	ADC 输入电压	GND	ı	V_{DD}	V	
RAIN	ADC 输入电阻	1	-	-	$M\Omega$	V _{IN} =5V
I _{lkg_ADC}	ADC 输入漏电流	-1	ı	1	μΑ	VIN= VAINX
I _{ADC1}	ADC 转换电流 1	-	2.7	3.2	mA	ADC 模块打开 V _{DD} =5V
I _{ADC2}	ADC 转换电流 2	-	2.1	2.5	mA	ADC 模块打开 V _{DD} =3.3V
DNL	微分非线性误差	-	±2	-	LSB	
INL	积分非线性误差	-	±2	-	LSB	., 5,,
Ez	偏移量误差	-	±5	-	LSB	V _{DD} =5V V _{REF} =5V
E _F	满刻度误差	-	±8	-	LSB	V KEF-O V
E _{AD}	总绝对误差	-	±8	-	LSB	
T _{ADC1}	ADC 采样+转换总时间 1	-	10	-	μs	ADC Clock = 2MHz ADC 采样周期 = 6
T _{ADC2}	ADC 采样+转换总时间 2	-	20	-	μs	ADC Clock = 1 MHz ADC 采样周期 = 6


V1.0

22 封装信息

SC92F84H3M28U

SOP28L (300mil) 外形尺寸 单位: 毫米

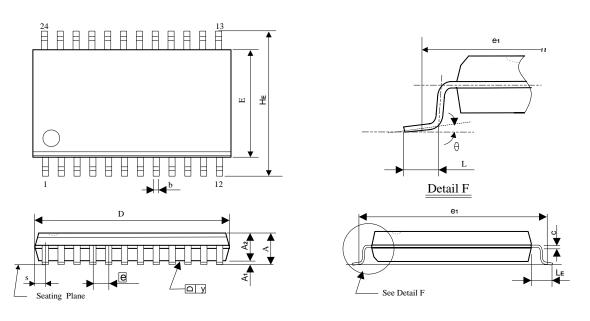


*** 口 .		mm(毫米)				
符号	最小	标准	最大			
Α	2.40	2.56	2.65			
A1	0.100	0.200	0.300			
A2	2.240	2.340	2.440			
b	0.39		0.48			
С		0.254 (BSC)				
D	17.80	18.00	18.20			
Е	7.30	7.50	7.70			
HE	10.100	10.300	10.500			
е		1.270 (BSC)				
L	0.7	0.85	1.0			
LE	1.3	1.4	1.5			
θ	0°	-	8°			

SC92F84H3X28U

TSSOP28 外形尺寸 单位:毫米

符号		mm(毫米)	
から	最小	标准	最大
Α	-	-	1.200
A 1	0.050	-	0.150
A2	0.800	0.900	1.050
b	0.190	-	0.300
С	0.090	-	0.200
D	9.600	9.700	9.800
E	6.250	6.400	6.550
e1	4.300	4.400	4.500
e		0.65 (BSC)	
L	-	-	1.0
θ	0°	-	8°
Н	0.05	-	0.25



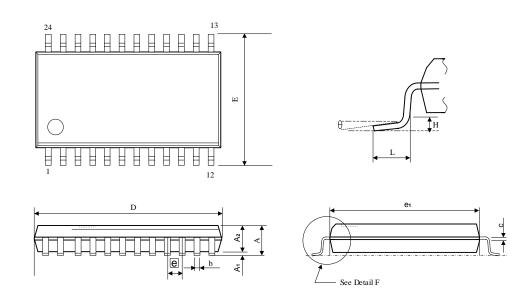
SC92F84H9M24U

SOP24L (300mil) 外形尺寸

单位:毫米

が 口.		mm(毫米)				
符号	最小	标准	最大			
Α	2.40	2.56	2.65			
A 1	0.100	0.200	0.300			
A2	2.240	2.340	2.440			
b	0.39		0.48			
С		0.254 (BSC)				
D		15.240 (BSC)				
E	7.374	7.450	7.574			
HE	10.100	10.300	10.500			
е		1.27 (BSC)				
L	0.7	0.85	1.0			
LE	1.3	1.4	1.5			
θ	0°	-	8°			

Page 91 of 97 V1.0


SC92F84H3/84H9/84H2

高速 1T 8051 内核 20 路高灵敏触控 Flash MCU

SC92F84H9X24U

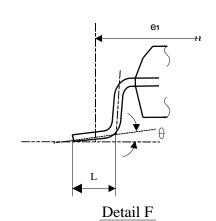
TSSOP24L 外形尺寸

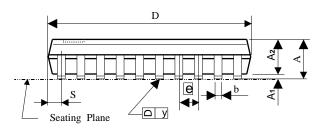
单位:毫米

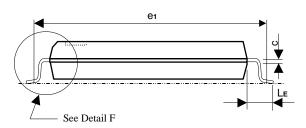
が ロ	mm(毫米)					
符号	最小	标准	最大			
Α	-	-	1.200			
A 1	0.050	-	0.150			
A2	0.800	-	1.000			
b	0.190	-	0.300			
С	0.090	-	0.200			
D	7.700	-	7.900			
Е	6.250	-	6.550			
e1	4.300	-	4.500			
е		0.65 (BSC)				
L	0.450	-	0.750			
θ	0°	-	8°			
Н	-	0.25	-			

Page 92 of 97 V1.0



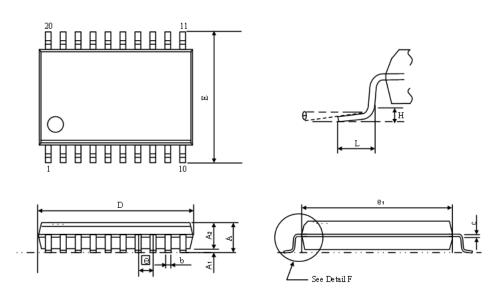



SC92F84H2M20U


SOP20L (300mil) 外形尺寸

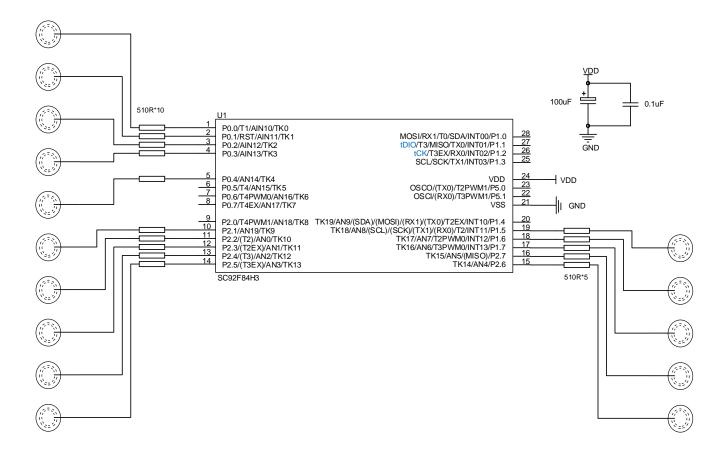
单位:毫米

符号	mm(毫米)			
	最小	标准	最大	
Α	2.40	2.56	2.65	
A1	0.100	0.200	0.300	
A2	2.240	2.340	2.440	
b	0.35		0.47	
С	0.25		0.31	
D	12.60	12.80	13.00	
E	7.30	7.50	7.70	
HE	10.100	10.300	10.500	
е	1.27 (BSC)			
L	0.700	0.850	1.000	
LE	1.30	1.40	1.50	
θ	0°	-	8°	


Page 93 of 97 V1.0

SC92F84H2X20U

单位:毫米 TSSOP20L 外形尺寸



符号	mm(毫米)			
	最小	标准	最大	
Α	-	-	1.200	
A1	0.050	-	0.150	
A2	0.800	-	1.050	
b	0.190	-	0.300	
С	0.090	-	0.200	
D	6.400	-	6.600	
Е	6.20	-	6.60	
e1	4.300	-	4.500	
е	0.65 (BSC)			
L	-	-	1.00	
θ	0°	-	8°	
Н	0.05		0.15	

Page 94 of 97 V1.0

23 应用电路

Page 95 of 97 V1.0

24 规格更改记录

版本	记录	日期
V1.0	正式版本	2025年11月14日
V0.1	初版	2022年11月18日

Page 96 of 97 V1.0

声明

深圳市赛元微电子股份有限公司(以下简称赛元)保留随时对赛元产品、文档或服务进行变更、更正、增强、修改和改进的权利,恕不另行通知。赛元认为提供的信息是准确可信的。本文档信息于 2022 年 11 月开始使用。在实际进行生产设计时,请参阅各产品最新的数据手册等相关资料。

Page 97 of 97 V1.0